Displaying similar documents to “An integral equation technique for solving mixed boundary value problems”

A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

Salim Meddahi, Virginia Selgas (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

Application of complex analysis to second order equations of mixed type

Guo Chun Wen (1998)

Annales Polonici Mathematici

Similarity:

This paper deals with an application of complex analysis to second order equations of mixed type. We mainly discuss the discontinuous Poincaré boundary value problem for a second order linear equation of mixed (elliptic-hyperbolic) type, i.e. the generalized Lavrent’ev-Bitsadze equation with weak conditions, using the methods of complex analysis. We first give a representation of solutions for the above boundary value problem, and then give solvability conditions via the Fredholm theorem...

Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition

Eliane Bécache, Jeronimo Rodríguez, Chrysoula Tsogka (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is...