Hölder regularity for solutions of mixed boundary value problems containing boundary terms

Maurizio Chicco; Marina Venturino

Bollettino dell'Unione Matematica Italiana (2006)

  • Volume: 9-B, Issue: 2, page 267-281
  • ISSN: 0392-4033

Abstract

top
We prove Holder regularity for solutions of mixed boundary value problems for a class of divergence form elliptic equations with discontinuous and unbounded coefficients, in the presence of boundary integrals.

How to cite

top

Chicco, Maurizio, and Venturino, Marina. "Hölder regularity for solutions of mixed boundary value problems containing boundary terms." Bollettino dell'Unione Matematica Italiana 9-B.2 (2006): 267-281. <http://eudml.org/doc/289604>.

@article{Chicco2006,
abstract = {We prove Holder regularity for solutions of mixed boundary value problems for a class of divergence form elliptic equations with discontinuous and unbounded coefficients, in the presence of boundary integrals.},
author = {Chicco, Maurizio, Venturino, Marina},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {267-281},
publisher = {Unione Matematica Italiana},
title = {Hölder regularity for solutions of mixed boundary value problems containing boundary terms},
url = {http://eudml.org/doc/289604},
volume = {9-B},
year = {2006},
}

TY - JOUR
AU - Chicco, Maurizio
AU - Venturino, Marina
TI - Hölder regularity for solutions of mixed boundary value problems containing boundary terms
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/6//
PB - Unione Matematica Italiana
VL - 9-B
IS - 2
SP - 267
EP - 281
AB - We prove Holder regularity for solutions of mixed boundary value problems for a class of divergence form elliptic equations with discontinuous and unbounded coefficients, in the presence of boundary integrals.
LA - eng
UR - http://eudml.org/doc/289604
ER -

References

top
  1. CHICCO, M., Principio di massimo forte per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale, Boll. Un. Mat. Ital. (4), 11 (1975), 100-109. Zbl0311.35025
  2. CHICCO, M., Condizioni sufficienti per l'hölderianita alla frontiera delle soluzioni di equazioni ellittiche di tipo variazionale, Boll. Un. Mat. Ital. (5), 15 A (1978), 571-580. Zbl0398.35024
  3. CHICCO, M. - VENTURINO, M., A priori inequalities in L ( Ω ) for solutions of elliptic equations in unbounded domains, Rend. Sem. Mat. Univ. Padova, 102 (1999), 141-151. Zbl0949.35044
  4. CHICCO, M. - VENTURINO, M., Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain, Ann. Mat. Pura Appl. (4), 178 (2000), 325-338. Zbl1031.35044
  5. CHICCO, M. - VENTURINO, M., A priori inequalities for solutions of mixed boundary value problems in unbounded domains, Ann. Mat. Pura Appl., 183 (2004), 241-259. Zbl1105.35033
  6. DE GIORGI, E., Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3), 3 (1957), 2543. Zbl0084.31901
  7. FIORENZA, R., Sulla hölderianita delle soluzioni dei problemi di derivata obliqua regolare del secondo ordine, Ricerche Mat., 14 (1965), 102-123. Zbl0134.09201
  8. GAGLIARDO, E., Proprietà di alcune classi di funzioni in piu variabili, Ricerche Mat., 7 (1958), 102-137. 
  9. GARIEPY, R. - ZIEMER, W. P., Behavior at the boundary of solutions of quasilinear elliptic equations, Arch. Rat. Mech. Anal., 56, (1974), 372-384. Zbl0297.35032
  10. IBRAGIMOV, A. I., Some qualitative properties of solutions of the mixed problem for equations of elliptic type, Math. USSR Sbornik, 50 (1985), 163-176. Zbl0599.35051
  11. LADYZHENSKAYA, O. A. - URAL'TSEVA, N. N., Linear and quasilinear elliptic equations, Academic Press, New York, 1968. 
  12. LANDIS, E. M., A new proof of a theorem of De Giorgi, Trans. Moscow Math. Soc., 16 (1967), 343-353. 
  13. MAZ'YA, V. G., On ( p , 1 ) -capacity, imbedding theorems and the spectrum of a selfadjoint elliptic operator, Math. USSR Izv., 7 (1973), 357-387. 
  14. MOSER, J., A new proof of the De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457-468. Zbl0111.09301
  15. NOVRUZOV, A. A., On the theory of the third boundary value problem for second order linear elliptic equations, Soviet Math. Dokl., 24 (1981), 500-504. Zbl0496.35028
  16. PACELLA, F. - TRICARICO, M., Symmetrization for a class of elliptic equations with mixed boundary conditions, Atti Sem. Mat. Fis. Univ. Modena, 34 (1985-86), 75-94. 
  17. STAMPACCHIA, G., Problemi al contorno ellittici, con dati discontinui, dotati di soluzioni hölderiane, Ann. Mat. Pura Appl. (4), 51 (1960), 1-38. Zbl0204.42001
  18. STAMPACCHIA, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Grenoble, 15 (1965), 189-258. Zbl0151.15401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.