Displaying similar documents to “Asymptotic stability of an integro-differential equation of parabolic type”

An averaging principle for stochastic evolution equations. II.

Bohdan Maslowski, Jan Seidler, Ivo Vrkoč (1991)

Mathematica Bohemica

Similarity:

In the present paper integral continuity theorems for solutions of stochastic evolution equations of parabolic type on unbounded time intervals are established. For this purpose, the asymptotic stability of stochastic partial differential equations is investigated, the results obtained being of independent interest. Stochastic evolution equations are treated as equations in Hilbert spaces within the framework of the semigroup approach.

On the long-time behaviour of a class of parabolic SPDE's: monotonicity methods and exchange of stability

Benjamin Bergé, Bruno Saussereau (2010)

ESAIM: Probability and Statistics

Similarity:

In this article we prove new results concerning the structure and the stability properties of the global attractor associated with a class of nonlinear parabolic stochastic partial differential equations driven by a standard multidimensional Brownian motion. We first use monotonicity methods to prove that the random fields either stabilize exponentially rapidly with probability one around one of the two equilibrium states, or that they set out to oscillate between them. In the first...

Invariant measures for nonlinear SPDE's: uniqueness and stability

Bohdan Maslowski, Jan Seidler (1998)

Archivum Mathematicum

Similarity:

The paper presents a review of some recent results on uniqueness of invariant measures for stochastic differential equations in infinite-dimensional state spaces, with particular attention paid to stochastic partial differential equations. Related results on asymptotic behaviour of solutions like ergodic theorems and convergence of probability laws of solutions in strong and weak topologies are also reviewed.