The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Steady-state distributions of piecewise Markov processes”

Accurate calculations of Stationary Distributions and Mean First Passage Times in Markov Renewal Processes and Markov Chains

Jeffrey J. Hunter (2016)

Special Matrices

Similarity:

This article describes an accurate procedure for computing the mean first passage times of a finite irreducible Markov chain and a Markov renewal process. The method is a refinement to the Kohlas, Zeit fur Oper Res, 30, 197–207, (1986) procedure. The technique is numerically stable in that it doesn’t involve subtractions. Algebraic expressions for the special cases of one, two, three and four states are derived.Aconsequence of the procedure is that the stationary distribution of the...

On jump processes with drift

Reinhard Wobst

Similarity:

CONTENTS0. Introduction...................................................................................5  0.1. Notations and preliminary results..............................................7Chapter 1. Jump processes with drift.................................................9  1.1. Definition basic properties........................................................9  1.2. Characteristics of j.p.d............................................................12    1.2.1. Drift functions.....................................................................12    1.2.2....

On conditional independence and log-convexity

František Matúš (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.