On conditional independence and log-convexity
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 4, page 1137-1147
 - ISSN: 0246-0203
 
Access Full Article
topAbstract
topHow to cite
topMatúš, František. "On conditional independence and log-convexity." Annales de l'I.H.P. Probabilités et statistiques 48.4 (2012): 1137-1147. <http://eudml.org/doc/271985>.
@article{Matúš2012,
	abstract = {If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.},
	author = {Matúš, František},
	journal = {Annales de l'I.H.P. Probabilités et statistiques},
	keywords = {conditional independence; Markov properties; factorizable distributions; graphical Markov models; log-convexity; Gibbs–Markov equivalence; Markov fields; Hammersley–Clifford theorem; contingency tables; Gibbs potentials; multivariate gaussian distributions; positive definite matrices; covariance selection model; Gibbs-Markov equivalence; Hammersley-Clifford theorem; multivariate Gaussian distributions},
	language = {eng},
	number = {4},
	pages = {1137-1147},
	publisher = {Gauthier-Villars},
	title = {On conditional independence and log-convexity},
	url = {http://eudml.org/doc/271985},
	volume = {48},
	year = {2012},
}
TY  - JOUR
AU  - Matúš, František
TI  - On conditional independence and log-convexity
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2012
PB  - Gauthier-Villars
VL  - 48
IS  - 4
SP  - 1137
EP  - 1147
AB  - If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.
LA  - eng
KW  - conditional independence; Markov properties; factorizable distributions; graphical Markov models; log-convexity; Gibbs–Markov equivalence; Markov fields; Hammersley–Clifford theorem; contingency tables; Gibbs potentials; multivariate gaussian distributions; positive definite matrices; covariance selection model; Gibbs-Markov equivalence; Hammersley-Clifford theorem; multivariate Gaussian distributions
UR  - http://eudml.org/doc/271985
ER  - 
References
top- [1] S. Amari. Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28. Springer, Berlin, 1985. Zbl0559.62001MR788689
 - [2] M. B. Averintsev. On a method of describing random fields with discrete argument. Problemy Peredachi Informacii6 (1970) 100–108. MR329038
 - [3] J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Stat. Methodol.36 (1974) 192–236. Zbl0327.60067MR373208
 - [4] G. Birkhoff. Lattice Theory. AMS Colloquium Publications XXV. AMS, Providence, RI, 1967. Zbl0153.02501MR227053
 - [5] D. Brook. On the distinction between the conditional probability and joint probability approaches in the specification of nearest-neighbour systems. Biometrika51 (1964) 481–483. Zbl0129.10703MR205315
 - [6] N. N. Chentsov. Statistical Decision Rules and Optimal Inference. AMS, Providence, RI, 1982. Translated from Russian, Nauka, Moscow, 1972. Zbl0484.62008MR343398
 - [7] P. Clifford. Markov random fields in statistics. In: Disorder in Physical Systems: A Volume in Honour of J. M. Hammersley 19–32. G. Grimmett and D. Welsh (Eds). Oxford University Press, New York, 1990. Zbl0736.62081MR1064553
 - [8] I. Csiszár and F. Matúš. Generalized maximum likelihood estimates for exponential families. Probab. Theory Related Fields141 (2008) 213–246. Zbl1133.62039MR2372970
 - [9] J. N. Darroch, S. L. Lauritzen and T. P. Speed. Markov fields and log-linear interaction models for contingency tables. Ann. Statist.8 (1980) 522–539. Zbl0444.62064MR568718
 - [10] J. N. Darroch and T. P. Speed. Additive and multiplicative models and interactions. Ann. Statist.11 (1983) 724–738. Zbl0556.62032MR707924
 - [11] A. P. Dawid. Conditional independence in statistical theory (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol.41 (1979) 1–31. Zbl0408.62004MR535541
 - [12] M. Drton, B. Sturmfels and S. Sullivant. Lectures on Algebraic Statistics. Birkhäuser, Basel, 2009. Zbl1166.13001MR2723140
 - [13] M. Drton and H. Xiao. Smoothness of Gaussian conditional independence models. Contemp. Math.516 (2010) 155–177. Zbl1196.62055MR2730747
 - [14] D. Griffeath. Markov and Gibbs fields with finite state space on graphs. Unpublished manuscript, 1973.
 - [15] G. R. Grimmett. A theorem about random fields. Bull. Lond. Math. Soc.5 (1973) 81–84. Zbl0261.60043MR329039
 - [16] G. R. Grimmett. Probability on Graphs. Cambridge Univ. Press, Cambridge, 2010. Zbl1228.60003MR2723356
 - [17] J. M. Hammersley and P. E. Clifford. Markov fields on finite graphs and lattices. Unpublished manuscript, 1971.
 - [18] F. Hausdorff. Grundzüge der Mengenlehre. Veit, Leipzig, 1914. Zbl45.0123.01JFM45.0123.01
 - [19] J. G. Kemeny, J. L. Snell and A. W. Knapp. Denumerable Markov Chains. Springer, New York, 1976. Zbl0348.60090MR407981
 - [20] S. L. Lauritzen. Graphical Models. Oxford Univ. Press, Oxford, 1996. Zbl0907.62001MR1419991
 - [21] R. Lněnička and F. Matúš. On Gaussian conditional independence structures. Kybernetika (Prague) 43 (2007) 327–342. Zbl1144.60302MR2362722
 - [22] F. Matúš. On equivalence of Markov properties over undirected graphs. J. Appl. Probab.29 (1992) 745–749. Zbl0753.68080MR1174448
 - [23] F. Matúš. Ascending and descending conditional independence relations. In: Transactions of the 11-th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes B 189–200. Academia, Prague, 1992. Zbl0764.60002
 - [24] F. Matúš. Conditional independences among four random variables III: Final conclusion. Combin. Probab. Comput.8 (1999) 269–276. Zbl0941.60004MR1702569
 - [25] F. Matúš. Conditional independences in Gaussian vectors and rings of polynomials. In Proceedings of WCII 2002. LNAI 3301 152–161. G. Kern-Isberner, W. Rödder and F. Kulmann (Eds). Springer, Berlin, 2005. Zbl1111.68685
 - [26] J. Moussouris. Gibbs and Markov random systems with constraints. J. Stat. Phys.10 (1974) 11–33. MR432132
 - [27] C. J. Preston. Generalized Gibbs states and Markov random fields. Adv. in Appl. Probab.5 (1973) 242–261. Zbl0318.60085MR405645
 - [28] S. Sherman. Markov random fields and Gibbs random fields. Israel J. Math.14 (1973) 92–103. Zbl0255.60047MR321185
 - [29] T. P. Speed and H. T. Kiiveri. Gaussian Markov distributions over finite graphs. Ann. Statist.14 (1986) 138–150. Zbl0589.62033MR829559
 - [30] F. Spitzer. Markov random fields and Gibbs ensembles. Amer. Math. Monthly78 (1971) 142–154. Zbl0241.60094MR277036
 - [31] M. Studený. Probabilistic Conditional Independence Structures. Springer, New York, 2005. Zbl1070.62001
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.