On conditional independence and log-convexity

František Matúš

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 4, page 1137-1147
  • ISSN: 0246-0203

Abstract

top
If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.

How to cite

top

Matúš, František. "On conditional independence and log-convexity." Annales de l'I.H.P. Probabilités et statistiques 48.4 (2012): 1137-1147. <http://eudml.org/doc/271985>.

@article{Matúš2012,
abstract = {If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.},
author = {Matúš, František},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {conditional independence; Markov properties; factorizable distributions; graphical Markov models; log-convexity; Gibbs–Markov equivalence; Markov fields; Hammersley–Clifford theorem; contingency tables; Gibbs potentials; multivariate gaussian distributions; positive definite matrices; covariance selection model; Gibbs-Markov equivalence; Hammersley-Clifford theorem; multivariate Gaussian distributions},
language = {eng},
number = {4},
pages = {1137-1147},
publisher = {Gauthier-Villars},
title = {On conditional independence and log-convexity},
url = {http://eudml.org/doc/271985},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Matúš, František
TI - On conditional independence and log-convexity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 1137
EP - 1147
AB - If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.
LA - eng
KW - conditional independence; Markov properties; factorizable distributions; graphical Markov models; log-convexity; Gibbs–Markov equivalence; Markov fields; Hammersley–Clifford theorem; contingency tables; Gibbs potentials; multivariate gaussian distributions; positive definite matrices; covariance selection model; Gibbs-Markov equivalence; Hammersley-Clifford theorem; multivariate Gaussian distributions
UR - http://eudml.org/doc/271985
ER -

References

top
  1. [1] S. Amari. Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28. Springer, Berlin, 1985. Zbl0559.62001MR788689
  2. [2] M. B. Averintsev. On a method of describing random fields with discrete argument. Problemy Peredachi Informacii6 (1970) 100–108. MR329038
  3. [3] J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Stat. Methodol.36 (1974) 192–236. Zbl0327.60067MR373208
  4. [4] G. Birkhoff. Lattice Theory. AMS Colloquium Publications XXV. AMS, Providence, RI, 1967. Zbl0153.02501MR227053
  5. [5] D. Brook. On the distinction between the conditional probability and joint probability approaches in the specification of nearest-neighbour systems. Biometrika51 (1964) 481–483. Zbl0129.10703MR205315
  6. [6] N. N. Chentsov. Statistical Decision Rules and Optimal Inference. AMS, Providence, RI, 1982. Translated from Russian, Nauka, Moscow, 1972. Zbl0484.62008MR343398
  7. [7] P. Clifford. Markov random fields in statistics. In: Disorder in Physical Systems: A Volume in Honour of J. M. Hammersley 19–32. G. Grimmett and D. Welsh (Eds). Oxford University Press, New York, 1990. Zbl0736.62081MR1064553
  8. [8] I. Csiszár and F. Matúš. Generalized maximum likelihood estimates for exponential families. Probab. Theory Related Fields141 (2008) 213–246. Zbl1133.62039MR2372970
  9. [9] J. N. Darroch, S. L. Lauritzen and T. P. Speed. Markov fields and log-linear interaction models for contingency tables. Ann. Statist.8 (1980) 522–539. Zbl0444.62064MR568718
  10. [10] J. N. Darroch and T. P. Speed. Additive and multiplicative models and interactions. Ann. Statist.11 (1983) 724–738. Zbl0556.62032MR707924
  11. [11] A. P. Dawid. Conditional independence in statistical theory (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol.41 (1979) 1–31. Zbl0408.62004MR535541
  12. [12] M. Drton, B. Sturmfels and S. Sullivant. Lectures on Algebraic Statistics. Birkhäuser, Basel, 2009. Zbl1166.13001MR2723140
  13. [13] M. Drton and H. Xiao. Smoothness of Gaussian conditional independence models. Contemp. Math.516 (2010) 155–177. Zbl1196.62055MR2730747
  14. [14] D. Griffeath. Markov and Gibbs fields with finite state space on graphs. Unpublished manuscript, 1973. 
  15. [15] G. R. Grimmett. A theorem about random fields. Bull. Lond. Math. Soc.5 (1973) 81–84. Zbl0261.60043MR329039
  16. [16] G. R. Grimmett. Probability on Graphs. Cambridge Univ. Press, Cambridge, 2010. Zbl1228.60003MR2723356
  17. [17] J. M. Hammersley and P. E. Clifford. Markov fields on finite graphs and lattices. Unpublished manuscript, 1971. 
  18. [18] F. Hausdorff. Grundzüge der Mengenlehre. Veit, Leipzig, 1914. Zbl45.0123.01JFM45.0123.01
  19. [19] J. G. Kemeny, J. L. Snell and A. W. Knapp. Denumerable Markov Chains. Springer, New York, 1976. Zbl0348.60090MR407981
  20. [20] S. L. Lauritzen. Graphical Models. Oxford Univ. Press, Oxford, 1996. Zbl0907.62001MR1419991
  21. [21] R. Lněnička and F. Matúš. On Gaussian conditional independence structures. Kybernetika (Prague) 43 (2007) 327–342. Zbl1144.60302MR2362722
  22. [22] F. Matúš. On equivalence of Markov properties over undirected graphs. J. Appl. Probab.29 (1992) 745–749. Zbl0753.68080MR1174448
  23. [23] F. Matúš. Ascending and descending conditional independence relations. In: Transactions of the 11-th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes B 189–200. Academia, Prague, 1992. Zbl0764.60002
  24. [24] F. Matúš. Conditional independences among four random variables III: Final conclusion. Combin. Probab. Comput.8 (1999) 269–276. Zbl0941.60004MR1702569
  25. [25] F. Matúš. Conditional independences in Gaussian vectors and rings of polynomials. In Proceedings of WCII 2002. LNAI 3301 152–161. G. Kern-Isberner, W. Rödder and F. Kulmann (Eds). Springer, Berlin, 2005. Zbl1111.68685
  26. [26] J. Moussouris. Gibbs and Markov random systems with constraints. J. Stat. Phys.10 (1974) 11–33. MR432132
  27. [27] C. J. Preston. Generalized Gibbs states and Markov random fields. Adv. in Appl. Probab.5 (1973) 242–261. Zbl0318.60085MR405645
  28. [28] S. Sherman. Markov random fields and Gibbs random fields. Israel J. Math.14 (1973) 92–103. Zbl0255.60047MR321185
  29. [29] T. P. Speed and H. T. Kiiveri. Gaussian Markov distributions over finite graphs. Ann. Statist.14 (1986) 138–150. Zbl0589.62033MR829559
  30. [30] F. Spitzer. Markov random fields and Gibbs ensembles. Amer. Math. Monthly78 (1971) 142–154. Zbl0241.60094MR277036
  31. [31] M. Studený. Probabilistic Conditional Independence Structures. Springer, New York, 2005. Zbl1070.62001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.