On conditional independence and log-convexity
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 4, page 1137-1147
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topMatúš, František. "On conditional independence and log-convexity." Annales de l'I.H.P. Probabilités et statistiques 48.4 (2012): 1137-1147. <http://eudml.org/doc/271985>.
@article{Matúš2012,
abstract = {If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.},
author = {Matúš, František},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {conditional independence; Markov properties; factorizable distributions; graphical Markov models; log-convexity; Gibbs–Markov equivalence; Markov fields; Hammersley–Clifford theorem; contingency tables; Gibbs potentials; multivariate gaussian distributions; positive definite matrices; covariance selection model; Gibbs-Markov equivalence; Hammersley-Clifford theorem; multivariate Gaussian distributions},
language = {eng},
number = {4},
pages = {1137-1147},
publisher = {Gauthier-Villars},
title = {On conditional independence and log-convexity},
url = {http://eudml.org/doc/271985},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Matúš, František
TI - On conditional independence and log-convexity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 1137
EP - 1147
AB - If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.
LA - eng
KW - conditional independence; Markov properties; factorizable distributions; graphical Markov models; log-convexity; Gibbs–Markov equivalence; Markov fields; Hammersley–Clifford theorem; contingency tables; Gibbs potentials; multivariate gaussian distributions; positive definite matrices; covariance selection model; Gibbs-Markov equivalence; Hammersley-Clifford theorem; multivariate Gaussian distributions
UR - http://eudml.org/doc/271985
ER -
References
top- [1] S. Amari. Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28. Springer, Berlin, 1985. Zbl0559.62001MR788689
- [2] M. B. Averintsev. On a method of describing random fields with discrete argument. Problemy Peredachi Informacii6 (1970) 100–108. MR329038
- [3] J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Stat. Methodol.36 (1974) 192–236. Zbl0327.60067MR373208
- [4] G. Birkhoff. Lattice Theory. AMS Colloquium Publications XXV. AMS, Providence, RI, 1967. Zbl0153.02501MR227053
- [5] D. Brook. On the distinction between the conditional probability and joint probability approaches in the specification of nearest-neighbour systems. Biometrika51 (1964) 481–483. Zbl0129.10703MR205315
- [6] N. N. Chentsov. Statistical Decision Rules and Optimal Inference. AMS, Providence, RI, 1982. Translated from Russian, Nauka, Moscow, 1972. Zbl0484.62008MR343398
- [7] P. Clifford. Markov random fields in statistics. In: Disorder in Physical Systems: A Volume in Honour of J. M. Hammersley 19–32. G. Grimmett and D. Welsh (Eds). Oxford University Press, New York, 1990. Zbl0736.62081MR1064553
- [8] I. Csiszár and F. Matúš. Generalized maximum likelihood estimates for exponential families. Probab. Theory Related Fields141 (2008) 213–246. Zbl1133.62039MR2372970
- [9] J. N. Darroch, S. L. Lauritzen and T. P. Speed. Markov fields and log-linear interaction models for contingency tables. Ann. Statist.8 (1980) 522–539. Zbl0444.62064MR568718
- [10] J. N. Darroch and T. P. Speed. Additive and multiplicative models and interactions. Ann. Statist.11 (1983) 724–738. Zbl0556.62032MR707924
- [11] A. P. Dawid. Conditional independence in statistical theory (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol.41 (1979) 1–31. Zbl0408.62004MR535541
- [12] M. Drton, B. Sturmfels and S. Sullivant. Lectures on Algebraic Statistics. Birkhäuser, Basel, 2009. Zbl1166.13001MR2723140
- [13] M. Drton and H. Xiao. Smoothness of Gaussian conditional independence models. Contemp. Math.516 (2010) 155–177. Zbl1196.62055MR2730747
- [14] D. Griffeath. Markov and Gibbs fields with finite state space on graphs. Unpublished manuscript, 1973.
- [15] G. R. Grimmett. A theorem about random fields. Bull. Lond. Math. Soc.5 (1973) 81–84. Zbl0261.60043MR329039
- [16] G. R. Grimmett. Probability on Graphs. Cambridge Univ. Press, Cambridge, 2010. Zbl1228.60003MR2723356
- [17] J. M. Hammersley and P. E. Clifford. Markov fields on finite graphs and lattices. Unpublished manuscript, 1971.
- [18] F. Hausdorff. Grundzüge der Mengenlehre. Veit, Leipzig, 1914. Zbl45.0123.01JFM45.0123.01
- [19] J. G. Kemeny, J. L. Snell and A. W. Knapp. Denumerable Markov Chains. Springer, New York, 1976. Zbl0348.60090MR407981
- [20] S. L. Lauritzen. Graphical Models. Oxford Univ. Press, Oxford, 1996. Zbl0907.62001MR1419991
- [21] R. Lněnička and F. Matúš. On Gaussian conditional independence structures. Kybernetika (Prague) 43 (2007) 327–342. Zbl1144.60302MR2362722
- [22] F. Matúš. On equivalence of Markov properties over undirected graphs. J. Appl. Probab.29 (1992) 745–749. Zbl0753.68080MR1174448
- [23] F. Matúš. Ascending and descending conditional independence relations. In: Transactions of the 11-th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes B 189–200. Academia, Prague, 1992. Zbl0764.60002
- [24] F. Matúš. Conditional independences among four random variables III: Final conclusion. Combin. Probab. Comput.8 (1999) 269–276. Zbl0941.60004MR1702569
- [25] F. Matúš. Conditional independences in Gaussian vectors and rings of polynomials. In Proceedings of WCII 2002. LNAI 3301 152–161. G. Kern-Isberner, W. Rödder and F. Kulmann (Eds). Springer, Berlin, 2005. Zbl1111.68685
- [26] J. Moussouris. Gibbs and Markov random systems with constraints. J. Stat. Phys.10 (1974) 11–33. MR432132
- [27] C. J. Preston. Generalized Gibbs states and Markov random fields. Adv. in Appl. Probab.5 (1973) 242–261. Zbl0318.60085MR405645
- [28] S. Sherman. Markov random fields and Gibbs random fields. Israel J. Math.14 (1973) 92–103. Zbl0255.60047MR321185
- [29] T. P. Speed and H. T. Kiiveri. Gaussian Markov distributions over finite graphs. Ann. Statist.14 (1986) 138–150. Zbl0589.62033MR829559
- [30] F. Spitzer. Markov random fields and Gibbs ensembles. Amer. Math. Monthly78 (1971) 142–154. Zbl0241.60094MR277036
- [31] M. Studený. Probabilistic Conditional Independence Structures. Springer, New York, 2005. Zbl1070.62001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.