Hereditarily Indecomposable Hausdorff Continua Have Unique Hyperspaces and
Alejandro Illanes (2011)
Publications de l'Institut Mathématique
Similarity:
Alejandro Illanes (2011)
Publications de l'Institut Mathématique
Similarity:
J. Grispolakis, E. D. Tymchatyn (1979)
Colloquium Mathematicae
Similarity:
J. Krasinkiewicz, Sam Nadler (1978)
Fundamenta Mathematicae
Similarity:
Roman Mańka (1987)
Colloquium Mathematicae
Similarity:
Sam Nadler (1973)
Fundamenta Mathematicae
Similarity:
Hisao Kato (1988)
Compositio Mathematica
Similarity:
Charatonik, Janusz J. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
J. Krasinkiewicz (1974)
Fundamenta Mathematicae
Similarity:
Witold Bula (1981)
Colloquium Mathematicae
Similarity:
Acosta, Gerardo, Charatonik, Janusz J. (2004)
Mathematica Pannonica
Similarity:
S. Drobot (1971)
Applicationes Mathematicae
Similarity:
Mirosław Sobolewski (2015)
Fundamenta Mathematicae
Similarity:
A continuum is a metric compact connected space. A continuum is chainable if it is an inverse limit of arcs. A continuum is weakly chainable if it is a continuous image of a chainable continuum. A space X is uniquely arcwise connected if any two points in X are the endpoints of a unique arc in X. D. P. Bellamy asked whether if X is a weakly chainable uniquely arcwise connected continuum then every mapping f: X → X has a fixed point. We give a counterexample.
Janusz Charatonik (1964)
Fundamenta Mathematicae
Similarity: