The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “ Stability of n -Bit Generalized Full Adder Circuits (GFAs). Part II ”

Bertrand’s Ballot Theorem

Karol Pąk (2014)

Formalized Mathematics

Similarity:

In this article we formalize the Bertrand’s Ballot Theorem based on [17]. Suppose that in an election we have two candidates: A that receives n votes and B that receives k votes, and additionally n ≥ k. Then this theorem states that the probability of the situation where A maintains more votes than B throughout the counting of the ballots is equal to (n − k)/(n + k). This theorem is item #30 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/. ...

Stability of the 4-2 Binary Addition Circuit Cells. Part I

Katsumi Wasaki (2008)

Formalized Mathematics

Similarity:

To evaluate our formal verification method on a real-size calculation circuit, in this article, we continue to formalize the concept of the 4-2 Binary Addition Cell primitives (FTAs) to define the structures of calculation units for a very fast multiplication algorithm for VLSI implementation [11]. We define the circuit structure of four-types FTAs, TYPE-0 to TYPE-3, using the series constructions of the Generalized Full Adder Circuits (GFAs) that generalized adder to have for each positive...

Dyadic diaphony

Peter Hellekalek, Hannes Leeb (1997)

Acta Arithmetica

Similarity: