The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The characterization of the cut of funnel in a planar semidynamical system”

Unavoidable set of face types for planar maps

Mirko Horňák, Stanislav Jendrol (1996)

Discussiones Mathematicae Graph Theory

Similarity:

The type of a face f of a planar map is a sequence of degrees of vertices of f as they are encountered when traversing the boundary of f. A set 𝒯 of face types is found such that in any normal planar map there is a face with type from 𝒯. The set 𝒯 has four infinite series of types as, in a certain sense, the minimum possible number. An analogous result is applied to obtain new upper bounds for the cyclic chromatic number of 3-connected planar maps.

Light edges in 1-planar graphs with prescribed minimum degree

Dávid Hudák, Peter Šugerek (2012)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is called 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree δ ≥ 4 contains an edge with degrees of its endvertices of type (4, ≤ 13) or (5, ≤ 9) or (6, ≤ 8) or (7,7). We also show that for δ ≥ 5 these bounds are best possible and that the list of edges is minimal (in the sense that, for each of the considered edge types there are 1-planar graphs whose set of types of edges contains...

Triangle Decompositions of Planar Graphs

Christina M. Mynhardt, Christopher M. van Bommel (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A multigraph G is triangle decomposable if its edge set can be partitioned into subsets, each of which induces a triangle of G, and rationally triangle decomposable if its triangles can be assigned rational weights such that for each edge e of G, the sum of the weights of the triangles that contain e equals 1. We present a necessary and sufficient condition for a planar multigraph to be triangle decomposable. We also show that if a simple planar graph is rationally triangle decomposable,...

Planar Ramsey numbers

Izolda Gorgol (2005)

Discussiones Mathematicae Graph Theory

Similarity:

The planar Ramsey number PR(G,H) is defined as the smallest integer n for which any 2-colouring of edges of Kₙ with red and blue, where red edges induce a planar graph, leads to either a red copy of G, or a blue H. In this note we study the weak induced version of the planar Ramsey number in the case when the second graph is complete.