The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The Knot Spectrum of Confined Random Equilateral Polygons”

Knot manifolds with isomorphic spines

Alberto Cavicchioli, Friedrich Hegenbarth (1994)

Fundamenta Mathematicae

Similarity:

We study the relation between the concept of spine and the representation of orientable bordered 3-manifolds by Heegaard diagrams. As a consequence, we show that composing invertible non-amphicheiral knots yields examples of topologically different knot manifolds with isomorphic spines. These results are related to some questions listed in [9], [11] and recover the main theorem of [10] as a corollary. Finally, an application concerning knot manifolds of composite knots with h prime factors...

High-dimensional knots corresponding to the fractional Fibonacci groups

Andrzej Szczepański, Andreĭ Vesnin (1999)

Fundamenta Mathematicae

Similarity:

We prove that the natural HNN-extensions of the fractional Fibonacci groups are the fundamental groups of high-dimensional knot complements. We also give some characterization and interpretation of these knots. In particular we show that some of them are 2-knots.

Characterization of knot complements in the n-sphere

Vo-Thanh Liem, Gerard Venema (1995)

Fundamenta Mathematicae

Similarity:

Knot complements in the n-sphere are characterized. A connected open subset W of S n is homeomorphic with the complement of a locally flat (n-2)-sphere in S n , n ≥ 4, if and only if the first homology group of W is infinite cyclic, W has one end, and the homotopy groups of the end of W are isomorphic to those of S 1 in dimensions less than n/2. This result generalizes earlier theorems of Daverman, Liem, and Liem and Venema.