Varieties of Topological Groups Generated by Groups with Invariant Compact Neighbourhoods of the Identity
Sidney A. Morris, N. Kelly (1975)
Matematický časopis
Similarity:
Sidney A. Morris, N. Kelly (1975)
Matematický časopis
Similarity:
Sidney A. Morris (1974)
Colloquium Mathematicae
Similarity:
Sidney A. Morris (1974)
Matematický časopis
Similarity:
Sidney Morris (1974)
Fundamenta Mathematicae
Similarity:
Sidney A. Morris (1972)
Colloquium Mathematicae
Similarity:
Sidney A. Morris (1973)
Colloquium Mathematicae
Similarity:
Otera, Daniele Ettore, Russo, Francesco G. (2010)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Carolyn E. McPhail, Sidney A. Morris
Similarity:
A variety of topological groups is a class of (not necessarily Hausdorff) topological groups closed under the operations of forming subgroups, quotient groups and arbitrary products. The variety of topological groups generated by a class of topological groups is the smallest variety containing the class. In this paper methods are presented to distinguish a number of significant varieties of abelian topological groups, including the varieties generated by (i) the class of all locally...
B. Bajorska, O. Macedońska (2001)
Colloquium Mathematicae
Similarity:
Let G* denote a nonprincipal ultrapower of a group G. In 1986 M.~Boffa posed a question equivalent to the following one: if G does not satisfy a positive law, does G* contain a free nonabelian subsemigroup? We give the affirmative answer to this question in the large class of groups containing all residually finite and all soluble groups, in fact, all groups considered in traditional textbooks on group theory.
W. F. Lamartin
Similarity:
CONTENTSIntroduction................... 51. k-spaces.................... 62. k-groups.................... 14References..................... 32
Rolf Brandl, Gabriella Corsi Tani, Luigi Serena (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: