Displaying similar documents to “Some Basic Properties of Some Special Matrices. Part III”

Determinant and Inverse of Matrices of Real Elements

Nobuyuki Tamura, Yatsuka Nakamura (2007)

Formalized Mathematics

Similarity:

In this paper the classic theory of matrices of real elements (see e.g. [12], [13]) is developed. We prove selected equations that have been proved previously for matrices of field elements. Similarly, we introduce in this special context the determinant of a matrix, the identity and zero matrices, and the inverse matrix. The new concept discussed in the case of matrices of real numbers is the property of matrices as operators acting on finite sequences of real numbers from both sides....

Generalizations of Nekrasov matrices and applications

Ljiljana Cvetković, Vladimir Kostić, Maja Nedović (2015)

Open Mathematics

Similarity:

In this paper we present a nonsingularity result which is a generalization of Nekrasov property by using two different permutations of the index set. The main motivation comes from the following observation: matrices that are Nekrasov matrices up to the same permutations of rows and columns, are nonsingular. But, testing all the permutations of the index set for the given matrix is too expensive. So, in some cases, our new nonsingularity criterion allows us to use the results already...

The theory and applications of complex matrix scalings

Rajesh Pereira, Joanna Boneng (2014)

Special Matrices

Similarity:

We generalize the theory of positive diagonal scalings of real positive definite matrices to complex diagonal scalings of complex positive definite matrices. A matrix A is a diagonal scaling of a positive definite matrix M if there exists an invertible complex diagonal matrix D such that A = D*MD and where every row and every column of A sums to one. We look at some of the key properties of complex diagonal scalings and we conjecture that every n by n positive definite matrix has at...

Factorizations for q-Pascal matrices of two variables

Thomas Ernst (2015)

Special Matrices

Similarity:

In this second article on q-Pascal matrices, we show how the previous factorizations by the summation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows [...] We also find two different matrix products for [...]

Moore-Penrose inverse of a hollow symmetric matrix and a predistance matrix

Hiroshi Kurata, Ravindra B. Bapat (2016)

Special Matrices

Similarity:

By a hollow symmetric matrix we mean a symmetric matrix with zero diagonal elements. The notion contains those of predistance matrix and Euclidean distance matrix as its special cases. By a centered symmetric matrix we mean a symmetric matrix with zero row (and hence column) sums. There is a one-toone correspondence between the classes of hollow symmetric matrices and centered symmetric matrices, and thus with any hollow symmetric matrix D we may associate a centered symmetric matrix...