The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Real integrable spaces”

The McShane, PU and Henstock integrals of Banach valued functions

Luisa Di Piazza, Valeria Marraffa (2002)

Czechoslovak Mathematical Journal

Similarity:

Some relationships between the vector valued Henstock and McShane integrals are investigated. An integral for vector valued functions, defined by means of partitions of the unity (the PU-integral) is studied. In particular it is shown that a vector valued function is McShane integrable if and only if it is both Pettis and PU-integrable. Convergence theorems for the Henstock variational and the PU integrals are stated. The families of multipliers for the Henstock and the Henstock variational...

On Denjoy-Dunford and Denjoy-Pettis integrals

José Gámez, José Mendoza (1998)

Studia Mathematica

Similarity:

The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function f : [ a , b ] c 0 which is not Pettis integrable on any subinterval in [a,b], while ʃ J f belongs to c 0 for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with...

The Denjoy extension of the Riemann and McShane integrals

Jae Myung Park (2000)

Czechoslovak Mathematical Journal

Similarity:

In this paper we study the Denjoy-Riemann and Denjoy-McShane integrals of functions mapping an interval a , b into a Banach space X . It is shown that a Denjoy-Bochner integrable function on a , b is Denjoy-Riemann integrable on a , b , that a Denjoy-Riemann integrable function on a , b is Denjoy-McShane integrable on a , b and that a Denjoy-McShane integrable function on a , b is Denjoy-Pettis integrable on a , b . In addition, it is shown that for spaces that do not contain a copy of c 0 , a measurable Denjoy-McShane...