Displaying similar documents to “Global strong solutions of Vlasov's equation---necessary and sufficient conditions for their existence”

Global Attractor for the Convective Cahn-Hilliard Equation

Xiaopeng Zhao, Changchun Liu (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

This paper is concerned with the convective Cahn-Hilliard equation. We use a classical theorem on existence of a global attractor to derive that the convective Cahn-Hilliard equation possesses a global attractor on some subset of H².

Global attractors for a tropical climate model

Pigong Han, Keke Lei, Chenggang Liu, Xuewen Wang (2023)

Applications of Mathematics

Similarity:

This paper is devoted to the global attractors of the tropical climate model. We first establish the global well-posedness of the system. Then by studying the existence of bounded absorbing sets, the global attractor is constructed. The estimates of the Hausdorff dimension and of the fractal dimension of the global attractor are obtained in the end.

Decay and asymptotic behavior of solutions of the Keller-Segel system of degenerate and nondegenerate type

Takayoshi Ogawa (2006)

Banach Center Publications

Similarity:

We classify the global behavior of weak solutions of the Keller-Segel system of degenerate and nondegenerate type. For the stronger degeneracy, the weak solution exists globally in time and has a uniform time decay under some extra conditions. If the degeneracy is weaker, the solution exhibits a finite time blow up if the data is nonnegative. The situation is very similar to the semilinear case. Some additional discussion is also presented.

Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms

Erhan Pişkin (2015)

Open Mathematics

Similarity:

We consider the existence, both locally and globally in time, the decay and the blow up of the solution for the extensible beam equation with nonlinear damping and source terms. We prove the existence of the solution by Banach contraction mapping principle. The decay estimates of the solution are proved by using Nakao’s inequality. Moreover, under suitable conditions on the initial datum, we prove that the solution blow up in finite time.