Displaying similar documents to “5-Stars of Low Weight in Normal Plane Maps with Minimum Degree 5”

Total vertex irregularity strength of disjoint union of Helm graphs

Ali Ahmad, E.T. Baskoro, M. Imran (2012)

Discussiones Mathematicae Graph Theory

Similarity:

A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1,2,...,k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We...

The 1 , 2 , 3-Conjecture And 1 , 2-Conjecture For Sparse Graphs

Daniel W. Cranston, Sogol Jahanbekam, Douglas B. West (2014)

Discussiones Mathematicae Graph Theory

Similarity:

The 1, 2, 3-Conjecture states that the edges of a graph without isolated edges can be labeled from {1, 2, 3} so that the sums of labels at adjacent vertices are distinct. The 1, 2-Conjecture states that if vertices also receive labels and the vertex label is added to the sum of its incident edge labels, then adjacent vertices can be distinguished using only {1, 2}. We show that various configurations cannot occur in minimal counterexamples to these conjectures. Discharging then confirms...

Near-homogeneous spherical Latin bitrades

Nicholas J. Cavenagh (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A planar Eulerian triangulation is a simple plane graph in which each face is a triangle and each vertex has even degree. Such objects are known to be equivalent to spherical Latin bitrades. (A Latin bitrade describes the difference between two Latin squares of the same order.) We give a classification in the near-regular case when each vertex is of degree or (which we call a near-homogeneous spherical Latin bitrade, or NHSLB). The classification demonstrates that any NHSLB is equal...