The nucleus of the free alternative algebra.
Hentzel, I.R., Peresi, L.A. (2006)
Experimental Mathematics
Similarity:
Hentzel, I.R., Peresi, L.A. (2006)
Experimental Mathematics
Similarity:
R. Z. Buzyakova, A. Chigogidze (2011)
Fundamenta Mathematicae
Similarity:
Our main result states that every fixed-point free continuous self-map of ℝⁿ is colorable. This result can be reformulated as follows: A continuous map f: ℝⁿ → ℝⁿ is fixed-point free iff f̃: βℝⁿ → βℝⁿ is fixed-point free. We also obtain a generalization of this fact and present some examples
Jean Berstel (1985)
Publications du Département de mathématiques (Lyon)
Similarity:
Caro, Yair (1990)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Ekhad, Shalosh B., Zeilberger, Doron (1998)
Journal of Integer Sequences [electronic only]
Similarity:
Karl Dilcher, Lutz G. Lucht (2006)
Acta Arithmetica
Similarity:
B. Tilson (1972)
Semigroup forum
Similarity:
Tomasz Schoen (2001)
Acta Arithmetica
Similarity:
A. Kumar, P. K. Pathak (1976)
Colloquium Mathematicae
Similarity:
Calkin, Neil J., Finch, Steven R. (1996)
Experimental Mathematics
Similarity:
F. Levin, G. Rosenberger, B. Baumslag (1993)
Mathematische Zeitschrift
Similarity:
Xavier Ros-Oton, Joaquim Serra (2019)
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
Similarity:
Free boundary problems are those described by PDEs that exhibit a priori unknown (free) interfacesor boundaries. The most classical example is the melting of ice to water (the Stefan problem). In this case, the freeboundary is the liquid-solid interface between ice and water. A central mathematical challenge in this context is to understand the regularity and singularities of free boundaries. In this paper we provide a gentle introduction to this topic by presenting some classical results...
Ruimei Gao, Xiupeng Cui, Zhe Li (2017)
Open Mathematics
Similarity:
In this paper, we define the supersolvable order of hyperplanes in a supersolvable arrangement, and obtain a class of inductively free arrangements according to this order. Our main results improve the conclusion that every supersolvable arrangement is inductively free. In addition, we assert that the inductively free arrangement with the required induction table is supersolvable.