Displaying similar documents to “Note: Sharp Upper and Lower Bounds on the Number of Spanning Trees in Cartesian Product of Graphs”

On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs

Yilun Shang (2016)

Open Mathematics

Similarity:

As a generalization of the Sierpiński-like graphs, the subdivided-line graph Г(G) of a simple connected graph G is defined to be the line graph of the barycentric subdivision of G. In this paper we obtain a closed-form formula for the enumeration of spanning trees in Г(G), employing the theory of electrical networks. We present bounds for the largest and second smallest Laplacian eigenvalues of Г(G) in terms of the maximum degree, the number of edges, and the first Zagreb index of G....

Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs

Sebastian M. Cioabă, Xiaofeng Gu (2016)

Czechoslovak Mathematical Journal

Similarity:

The eigenvalues of graphs are related to many of its combinatorial properties. In his fundamental work, Fiedler showed the close connections between the Laplacian eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity. We present some new results describing the connections between the spectrum of a regular graph and other combinatorial parameters such as its generalized connectivity, toughness, and the existence of spanning trees with bounded degree. ...

Spanning tree congestion of rook's graphs

Kyohei Kozawa, Yota Otachi (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G joining the two components of T - e. The congestion of T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion over all its spanning trees. In this paper, we determine the spanning tree congestion of the rook's graph Kₘ ☐ Kₙ for any m and n.

Small integral trees.

Brouwer, A.E. (2008)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

The leafage of a chordal graph

In-Jen Lin, Terry A. McKee, Douglas B. West (1998)

Discussiones Mathematicae Graph Theory

Similarity:

The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - 1/2 lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use...