Displaying similar documents to “Extremal phenomena in certain classes of totally bounded groups”

The dual group of a dense subgroup

William Wistar Comfort, S. U. Raczkowski, F. Javier Trigos-Arrieta (2004)

Czechoslovak Mathematical Journal

Similarity:

Throughout this abstract, G is a topological Abelian group and G ^ is the space of continuous homomorphisms from G into the circle group 𝕋 in the compact-open topology. A dense subgroup D of G is said to determine G if the (necessarily continuous) surjective isomorphism G ^ D ^ given by h h | D is a homeomorphism, and G is determined if each dense subgroup of G determines G . The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable...

Metrization criteria for compact groups in terms of their dense subgroups

Dikran Dikranjan, Dmitri Shakhmatov (2013)

Fundamenta Mathematicae

Similarity:

According to Comfort, Raczkowski and Trigos-Arrieta, a dense subgroup D of a compact abelian group G determines G if the restriction homomorphism Ĝ → D̂ of the dual groups is a topological isomorphism. We introduce four conditions on D that are necessary for it to determine G and we resolve the following question: If one of these conditions holds for every dense (or G δ -dense) subgroup D of G, must G be metrizable? In particular, we prove (in ZFC) that a compact abelian group determined...

Cellularity and the index of narrowness in topological groups

Mihail G. Tkachenko (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study relations between the cellularity and index of narrowness in topological groups and their G δ -modifications. We show, in particular, that the inequalities in ( ( H ) τ ) 2 τ · in ( H ) and c ( ( H ) τ ) 2 2 τ · in ( H ) hold for every topological group H and every cardinal τ ω , where ( H ) τ denotes the underlying group H endowed with the G τ -modification of the original topology of H and in ( H ) is the index of narrowness of the group H . Also, we find some bounds for the complexity of continuous real-valued functions f on an arbitrary ω -narrow group...

On a generalization of Abelian sequential groups

Saak S. Gabriyelyan (2013)

Fundamenta Mathematicae

Similarity:

Let (G,τ) be a Hausdorff Abelian topological group. It is called an s-group (resp. a bs-group) if there is a set S of sequences in G such that τ is the finest Hausdorff (resp. precompact) group topology on G in which every sequence of S converges to zero. Characterizations of Abelian s- and bs-groups are given. If (G,τ) is a maximally almost periodic (MAP) Abelian s-group, then its Pontryagin dual group ( G , τ ) is a dense -closed subgroup of the compact group ( G d ) , where G d is the group G with...

Ordinals in topological groups

Raushan Z. Buzyakova (2007)

Fundamenta Mathematicae

Similarity:

We show that if an uncountable regular cardinal τ and τ + 1 embed in a topological group G as closed subspaces then G is not normal. We also prove that an uncountable regular cardinal cannot be embedded in a torsion free Abelian group that is hereditarily normal. These results are corollaries to our main results about ordinals in topological groups. To state the main results, let τ be an uncountable regular cardinal and G a T₁ topological group. We prove, among others, the following...

On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths

Weidong Gao, Yuanlin Li, Pingping Zhao, Jujuan Zhuang (2016)

Colloquium Mathematicae

Similarity:

Let G be an additive finite abelian group. For every positive integer ℓ, let d i s c ( G ) be the smallest positive integer t such that each sequence S over G of length |S| ≥ t has a nonempty zero-sum subsequence of length not equal to ℓ. In this paper, we determine d i s c ( G ) for certain finite groups, including cyclic groups, the groups G = C C 2 m and elementary abelian 2-groups. Following Girard, we define disc(G) as the smallest positive integer t such that every sequence S over G with |S| ≥ t has nonempty zero-sum...

The generalized criterion of Dieudonné for valuated p -groups

Peter Vassilev Danchev (2006)

Acta Mathematica Universitatis Ostraviensis

Similarity:

We prove that if G is an abelian p -group with a nice subgroup A so that G / A is a Σ -group, then G is a Σ -group if and only if A is a Σ -subgroup in G provided that A is equipped with a valuation induced by the restricted height function on G . In particular, if in addition A is pure in G , G is a Σ -group precisely when A is a Σ -group. This extends the classical Dieudonné criterion (Portugal. Math., 1952) as well as it supplies our recent results in (Arch. Math. Brno, 2005), (Bull. Math. Soc....

Cellularity of a space of subgroups of a discrete group

Arkady G. Leiderman, Igor V. Protasov (2008)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a discrete group G , we consider the set ( G ) of all subgroups of G endowed with topology of pointwise convergence arising from the standard embedding of ( G ) into the Cantor cube { 0 , 1 } G . We show that the cellularity c ( ( G ) ) 0 for every abelian group G , and, for every infinite cardinal τ , we construct a group G with c ( ( G ) ) = τ .

On topological groups with a small base and metrizability

Saak Gabriyelyan, Jerzy Kąkol, Arkady Leiderman (2015)

Fundamenta Mathematicae

Similarity:

A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, U α : α , such that U α U β whenever β ≤ α for all α , β . The class of all metrizable topological groups is a proper subclass of the class T G of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group G T G is metrizable, and hence G is strictly angelic. We deduce from...