On optimal center locations for radial basis function interpolation: computational aspects.
De Marchi, S. (2003)
Rendiconti del Seminario Matematico
Similarity:
De Marchi, S. (2003)
Rendiconti del Seminario Matematico
Similarity:
Jiří Kobza (1999)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
Kenta Kobayashi, Takuya Tsuchiya (2016)
Applications of Mathematics
Similarity:
We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates...
T.M. Mills, S.J. Smith (1992)
Numerische Mathematik
Similarity:
Simian, Dana, Simian, Corina (2003)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Robert Schaback (1982)
Mathematische Zeitschrift
Similarity: