Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation
Kenta Kobayashi; Takuya Tsuchiya
Applications of Mathematics (2016)
- Volume: 61, Issue: 2, page 121-133
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKobayashi, Kenta, and Tsuchiya, Takuya. "Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation." Applications of Mathematics 61.2 (2016): 121-133. <http://eudml.org/doc/276779>.
@article{Kobayashi2016,
abstract = {We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed triangles and tetrahedrons are proved by a method that is a straightforward extension of the original one given by Babuška-Aziz.},
author = {Kobayashi, Kenta, Tsuchiya, Takuya},
journal = {Applications of Mathematics},
keywords = {Lagrange interpolation; Babuška-Aziz's technique; difference quotients; Lagrange interpolation; Babuška-Aziz’s technique; difference quotients},
language = {eng},
number = {2},
pages = {121-133},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation},
url = {http://eudml.org/doc/276779},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Kobayashi, Kenta
AU - Tsuchiya, Takuya
TI - Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 121
EP - 133
AB - We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed triangles and tetrahedrons are proved by a method that is a straightforward extension of the original one given by Babuška-Aziz.
LA - eng
KW - Lagrange interpolation; Babuška-Aziz's technique; difference quotients; Lagrange interpolation; Babuška-Aziz’s technique; difference quotients
UR - http://eudml.org/doc/276779
ER -
References
top- Adams, R. A., Fournier, J. J. F., Sobolev Spaces, Pure and Applied Mathematics 140 Academic Press, New York (2003). (2003) Zbl1098.46001MR2424078
- Apel, T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics Teubner, Stuttgart (1999). (1999) Zbl0934.65121MR1716824
- Atkinson, K. E., An Introduction to Numerical Analysis, John Wiley & Sons, New York (1989). (1989) Zbl0718.65001MR1007135
- Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
- Barnhill, R. E., Gregory, J. A., 10.1007/BF01399411, Numer. Math. 25 (1976), 215-229. (1976) Zbl0304.65076MR0458000DOI10.1007/BF01399411
- Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0_7, Texts in Applied Mathematics 15 Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0_7
- Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext Springer, New York (2011). (2011) Zbl1220.46002MR2759829
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems. Repr., unabridged republ. of the 1978 orig, Classics in Applied Mathematics 40 SIAM, Philadelphia (2002). (2002) MR1930132
- Durán, R. G., 10.1090/S0025-5718-99-00994-1, Math. Comput. 68 (1999), 187-199. (1999) MR1489970DOI10.1090/S0025-5718-99-00994-1
- Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159 Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
- Jamet, P., Estimations d'erreur pour des éléments finis droits presque dégénérés, Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse numer., R-1 10 French (1976), 43-60. (1976) MR0455282
- Kobayashi, K., Tsuchiya, T., 10.1007/s13160-013-0128-y, Japan J. Ind. Appl. Math. 31 (2014), 193-210. (2014) Zbl1295.65011MR3167084DOI10.1007/s13160-013-0128-y
- Kobayashi, K., Tsuchiya, T., 10.1007/s10492-015-0108-4, Appl. Math., Praha 60 (2015), 485-499. (2015) Zbl1363.65015MR3396477DOI10.1007/s10492-015-0108-4
- Křížek, M., On semiregular families of triangulations and linear interpolation, Appl. Math., Praha 36 (1991), 223-232. (1991) Zbl0728.41003MR1109126
- Křížek, M., 10.1137/0729031, SIAM J. Numer. Anal. 29 (1992), 513-520. (1992) Zbl0755.41003MR1154279DOI10.1137/0729031
- Kufner, A., John, O., Fučík, S., Function Spaces, Monographs and Textsbooks on Mechanics of Solids and Fluids Noordhoff International Publishing, Leyden; Publishing House of the Czechoslovak Academy of Sciences, Prague (1977). (1977) MR0482102
- Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., 10.1090/mmono/023, Translations of Mathematical Monographs 23 AMS, Providence (1968). (1968) MR0241822DOI10.1090/mmono/023
- Shenk, N. A., 10.1090/S0025-5718-1994-1226816-5, Math. Comput. 63 (1994), 105-119. (1994) Zbl0807.65003MR1226816DOI10.1090/S0025-5718-1994-1226816-5
- Yamamoto, T., Introduction to Numerical Analysis, Japanese Saiensu-sha (2003). (2003)
Citations in EuDML Documents
top- Kenta Kobayashi, Takuya Tsuchiya, Error estimation for finite element solutions on meshes that contain thin elements
- Antti Hannukainen, Sergey Korotov, Michal Křížek, On Synge-type angle condition for -simplices
- Ali Khademi, Sergey Korotov, Jon Eivind Vatne, On interpolation error on degenerating prismatic elements
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.