Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation

Kenta Kobayashi; Takuya Tsuchiya

Applications of Mathematics (2016)

  • Volume: 61, Issue: 2, page 121-133
  • ISSN: 0862-7940

Abstract

top
We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed triangles and tetrahedrons are proved by a method that is a straightforward extension of the original one given by Babuška-Aziz.

How to cite

top

Kobayashi, Kenta, and Tsuchiya, Takuya. "Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation." Applications of Mathematics 61.2 (2016): 121-133. <http://eudml.org/doc/276779>.

@article{Kobayashi2016,
abstract = {We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed triangles and tetrahedrons are proved by a method that is a straightforward extension of the original one given by Babuška-Aziz.},
author = {Kobayashi, Kenta, Tsuchiya, Takuya},
journal = {Applications of Mathematics},
keywords = {Lagrange interpolation; Babuška-Aziz's technique; difference quotients; Lagrange interpolation; Babuška-Aziz’s technique; difference quotients},
language = {eng},
number = {2},
pages = {121-133},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation},
url = {http://eudml.org/doc/276779},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Kobayashi, Kenta
AU - Tsuchiya, Takuya
TI - Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 121
EP - 133
AB - We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed triangles and tetrahedrons are proved by a method that is a straightforward extension of the original one given by Babuška-Aziz.
LA - eng
KW - Lagrange interpolation; Babuška-Aziz's technique; difference quotients; Lagrange interpolation; Babuška-Aziz’s technique; difference quotients
UR - http://eudml.org/doc/276779
ER -

References

top
  1. Adams, R. A., Fournier, J. J. F., Sobolev Spaces, Pure and Applied Mathematics 140 Academic Press, New York (2003). (2003) Zbl1098.46001MR2424078
  2. Apel, T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics Teubner, Stuttgart (1999). (1999) Zbl0934.65121MR1716824
  3. Atkinson, K. E., An Introduction to Numerical Analysis, John Wiley & Sons, New York (1989). (1989) Zbl0718.65001MR1007135
  4. Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
  5. Barnhill, R. E., Gregory, J. A., 10.1007/BF01399411, Numer. Math. 25 (1976), 215-229. (1976) Zbl0304.65076MR0458000DOI10.1007/BF01399411
  6. Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0_7, Texts in Applied Mathematics 15 Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0_7
  7. Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext Springer, New York (2011). (2011) Zbl1220.46002MR2759829
  8. Ciarlet, P. G., The Finite Element Method for Elliptic Problems. Repr., unabridged republ. of the 1978 orig, Classics in Applied Mathematics 40 SIAM, Philadelphia (2002). (2002) MR1930132
  9. Durán, R. G., 10.1090/S0025-5718-99-00994-1, Math. Comput. 68 (1999), 187-199. (1999) MR1489970DOI10.1090/S0025-5718-99-00994-1
  10. Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159 Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
  11. Jamet, P., Estimations d'erreur pour des éléments finis droits presque dégénérés, Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse numer., R-1 10 French (1976), 43-60. (1976) MR0455282
  12. Kobayashi, K., Tsuchiya, T., 10.1007/s13160-013-0128-y, Japan J. Ind. Appl. Math. 31 (2014), 193-210. (2014) Zbl1295.65011MR3167084DOI10.1007/s13160-013-0128-y
  13. Kobayashi, K., Tsuchiya, T., 10.1007/s10492-015-0108-4, Appl. Math., Praha 60 (2015), 485-499. (2015) Zbl1363.65015MR3396477DOI10.1007/s10492-015-0108-4
  14. Křížek, M., On semiregular families of triangulations and linear interpolation, Appl. Math., Praha 36 (1991), 223-232. (1991) Zbl0728.41003MR1109126
  15. Křížek, M., 10.1137/0729031, SIAM J. Numer. Anal. 29 (1992), 513-520. (1992) Zbl0755.41003MR1154279DOI10.1137/0729031
  16. Kufner, A., John, O., Fučík, S., Function Spaces, Monographs and Textsbooks on Mechanics of Solids and Fluids Noordhoff International Publishing, Leyden; Publishing House of the Czechoslovak Academy of Sciences, Prague (1977). (1977) MR0482102
  17. Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., 10.1090/mmono/023, Translations of Mathematical Monographs 23 AMS, Providence (1968). (1968) MR0241822DOI10.1090/mmono/023
  18. Shenk, N. A., 10.1090/S0025-5718-1994-1226816-5, Math. Comput. 63 (1994), 105-119. (1994) Zbl0807.65003MR1226816DOI10.1090/S0025-5718-1994-1226816-5
  19. Yamamoto, T., Introduction to Numerical Analysis, Japanese Saiensu-sha (2003). (2003) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.