Displaying similar documents to “On the torsion of linear higher order connections”

Prolongation of linear semibasic tangent valued forms to product preserving gauge bundles of vector bundles.

Wlodzimierz M. Mikulski (2006)

Extracta Mathematicae

Similarity:

Let A be a Weil algebra and V be an A-module with dim V < ∞. Let E → M be a vector bundle and let TE → TM be the vector bundle corresponding to (A,V). We construct canonically a linear semibasic tangent valued p-form Tφ : T E → ΛT*TM ⊗ TTE on TE → TM from a linear semibasic tangent valued p-form φ : E → ΛT*M ⊗­ TE on E → M. For the Frolicher-Nijenhuis bracket we prove that [[Tφ, Tψ]] = T ([[φ,ψ]]) for any linear semibasic tangent valued p- and q-forms φ and ψ on E → M. We apply...

Cocalibrated G 2 -manifolds with Ricci flat characteristic connection

Thomas Friedrich (2013)

Communications in Mathematics

Similarity:

Any 7-dimensional cocalibrated G 2 -manifold admits a unique connection with skew symmetric torsion (see [8]). We study these manifolds under the additional condition that the -Ricci tensor vanish. In particular we describe their geometry in case of a maximal number of -parallel vector fields.

Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case

Josef Janyška, Martin Markl (2012)

Archivum Mathematicum

Similarity:

This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections. ...

On the functorial prolongations of principal bundles

Ivan Kolář, Antonella Cabras (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We describe the fundamental properties of the infinitesimal actions related with functorial prolongations of principal and associated bundles with respect to fiber product preserving bundle functors. Our approach is essentially based on the Weil algebra technique and an original concept of weak principal bundle.