Displaying similar documents to “Real-linear isometries between certain subspaces of continuous functions”

Finite codimensional linear isometries on spaces of differentiable and Lipschitz functions

Hironao Koshimizu (2011)

Open Mathematics

Similarity:

We characterize finite codimensional linear isometries on two spaces, C (n)[0; 1] and Lip [0; 1], where C (n)[0; 1] is the Banach space of n-times continuously differentiable functions on [0; 1] and Lip [0; 1] is the Banach space of Lipschitz continuous functions on [0; 1]. We will see they are exactly surjective isometries. Also, we show that C (n)[0; 1] and Lip [0; 1] admit neither isometric shifts nor backward shifts.

A note on Lipschitz isomorphisms in Hilbert spaces

Dean Ives (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that the following well-known open problems on existence of Lipschitz isomorphisms between subsets of Hilbert spaces are equivalent: Are balls isomorphic to spheres? Is the whole space isomorphic to the half space?