Displaying similar documents to “Finite basis problem for 2-testable monoids”

Some results on 𝒞 -varieties

Jean-Éric Pin, Howard Straubing (2005)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

In an earlier paper, the second author generalized Eilenberg’s variety theory by establishing a basic correspondence between certain classes of monoid morphisms and families of regular languages. We extend this theory in several directions. First, we prove a version of Reiterman’s theorem concerning the definition of varieties by identities, and illustrate this result by describing the identities associated with languages of the form ( a 1 a 2 a k ) + , where a 1 , ... , a k are distinct letters. Next, we generalize...

A conjecture on the concatenation product

Jean-Eric Pin, Pascal Weil (2001)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

In a previous paper, the authors studied the polynomial closure of a variety of languages and gave an algebraic counterpart, in terms of Mal’cev products, of this operation. They also formulated a conjecture about the algebraic counterpart of the boolean closure of the polynomial closure – this operation corresponds to passing to the upper level in any concatenation hierarchy. Although this conjecture is probably true in some particular cases, we give a counterexample in the general...

Pre-solid varieties of semigroups

K. Denecke, Jörg Koppitz (1995)

Archivum Mathematicum

Similarity:

Pre-hyperidentities generalize the concept of a hyperidentity. A variety V is said to be pre-solid if every identity in V is a pre-hyperidentity. Every solid variety is pre-solid. We consider pre-solid varieties of semigroups which are not solid, determine the smallest and the largest of them, and some elements in this interval.