Displaying similar documents to “Gromov hyperbolicity of planar graphs”

The hyperbolicity constant of infinite circulant graphs

José M. Rodríguez, José M. Sigarreta (2017)

Open Mathematics

Similarity:

If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. Deciding whether or not a graph is hyperbolic is usually very difficult; therefore, it is interesting to find classes of graphs which are hyperbolic. A graph...

Gromov hyperbolic cubic graphs

Domingo Pestana, José Rodríguez, José Sigarreta, María Villeta (2012)

Open Mathematics

Similarity:

If X is a geodesic metric space and x 1; x 2; x 3 ∈ X, a geodesic triangle T = {x 1; x 2; x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) = inf {δ ≥ 0: X is δ-hyperbolic}. We obtain information about the hyperbolicity...

Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen

Mahan Mj (2009-2010)

Séminaire de théorie spectrale et géométrie

Similarity:

The notion of generalises simultaneously and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.