The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Prime ideals in 0-distributive posets”

0-distributive posets

Khalid A. Mokbel, Vilas S. Kharat (2013)

Mathematica Bohemica

Similarity:

Several characterizations of 0-distributive posets are obtained by using the prime ideals as well as the semiprime ideals. It is also proved that if every proper l -filter of a poset is contained in a proper semiprime filter, then it is 0 -distributive. Further, the concept of a semiatom in 0-distributive posets is introduced and characterized in terms of dual atoms and also in terms of maximal annihilator. Moreover, semiatomic 0-distributive posets are defined and characterized. It is...

On n-normal posets

Radomír Halaš, Vinayak Joshi, Vilas Kharat (2010)

Open Mathematics

Similarity:

A poset Q is called n-normal, if its every prime ideal contains at most n minimal prime ideals. In this paper, using the prime ideal theorem for finite ideal distributive posets, some properties and characterizations of n-normal posets are obtained.

Primeness and semiprimeness in posets

Vilas S. Kharat, Khalid A. Mokbel (2009)

Mathematica Bohemica

Similarity:

The concept of a semiprime ideal in a poset is introduced. Characterizations of semiprime ideals in a poset P as well as characterizations of a semiprime ideal to be prime in P are obtained in terms of meet-irreducible elements of the lattice of ideals of P and in terms of maximality of ideals. Also, prime ideals in a poset are characterized.