Displaying similar documents to “On stable least squares solution to the system of linear inequalities”

Mathematical programming via the least-squares method

Evald Übi (2010)

Open Mathematics

Similarity:

The least-squares method is used to obtain a stable algorithm for a system of linear inequalities as well as linear and nonlinear programming. For these problems the solution with minimal norm for a system of linear inequalities is found by solving the non-negative least-squares (NNLS) problem. Approximate and exact solutions of these problems are discussed. Attention is mainly paid to finding the initial solution to an LP problem. For this purpose an NNLS problem is formulated, enabling...

A numerically stable least squares solution to the quadratic programming problem

E. Übi (2008)

Open Mathematics

Similarity:

The strictly convex quadratic programming problem is transformed to the least distance problem - finding the solution of minimum norm to the system of linear inequalities. This problem is equivalent to the linear least squares problem on the positive orthant. It is solved using orthogonal transformations, which are memorized as products. Like in the revised simplex method, an auxiliary matrix is used for computations. Compared to the modified-simplex type methods, the presented dual...

Exact and stable least squares solution to the linear programming problem

Evald Übi (2005)

Open Mathematics

Similarity:

A linear programming problem is transformed to the finding an element of polyhedron with the minimal norm. According to A. Cline [6], the problem is equivalent to the least squares problem on positive ortant. An orthogonal method for solving the problem is used. This method was presented earlier by the author and it is based on the highly developed least squares technique. First of all, the method is meant for solving unstable and degenerate problems. A new version of the artifical basis...