Displaying similar documents to “Remarks on affine complete distributive lattices”

Regular vector lattices of continuous functions and Korovkin-type theorems-Part I

Francesco Altomare, Mirella Cappelletti Montano (2005)

Studia Mathematica

Similarity:

We introduce and study a new class of locally convex vector lattices of continuous functions on a locally compact Hausdorff space, which we call regular vector lattices. We investigate some general properties of these spaces and of the subspaces of so-called generalized affine functions. Moreover, we present some Korovkin-type theorems for continuous positive linear operators; in particular, we study Korovkin subspaces for finitely defined operators, for the identity operator...

An affine framework for analytical mechanics

Paweł Urbański (2003)

Banach Center Publications

Similarity:

An affine Cartan calculus is developed. The concepts of special affine bundles and special affine duality are introduced. The canonical isomorphisms, fundamental for Lagrangian and Hamiltonian formulations of the dynamics in the affine setting are proved.

Affine bijections of C(X,I)

Janko Marovt (2006)

Studia Mathematica

Similarity:

Let 𝒳 be a compact Hausdorff space which satisfies the first axiom of countability, I = [0,1] and 𝓒(𝒳,I) the set of all continuous functions from 𝒳 to I. If φ: 𝓒(𝒳,I) → 𝓒(𝒳,I) is a bijective affine map then there exists a homeomorphism μ: 𝒳 → 𝒳 such that for every component C in 𝒳 we have either φ(f)(x) = f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C, or φ(f)(x) = 1-f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C.

Self-affine fractals of finite type

Christoph Bandt, Mathias Mesing (2009)

Banach Center Publications

Similarity:

In the class of self-affine sets on ℝⁿ we study a subclass for which the geometry is rather tractable. A type is a standardized position of two intersecting pieces. For a self-affine tiling, this can be identified with an edge or vertex type. We assume that the number of types is finite. We study the topology of such fractals and their boundary sets, and we show how new finite type fractals can be constructed. For finite type self-affine tiles in the plane we give an algorithm which...

Order affine completeness of lattices with Boolean congruence lattices

Kalle Kaarli, Vladimir Kuchmei (2007)

Czechoslovak Mathematical Journal

Similarity:

This paper grew out from attempts to determine which modular lattices of finite height are locally order affine complete. A surprising discovery was that one can go quite far without assuming the modularity itself. The only thing which matters is that the congruence lattice is finite Boolean. The local order affine completeness problem of such lattices 𝐋 easily reduces to the case when 𝐋 is a subdirect product of two simple lattices 𝐋 1 and 𝐋 2 . Our main result claims that such a lattice...