The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A rough curvature-dimension condition for metric measure spaces”

Angles between Curves in Metric Measure Spaces

Bang-Xian Han, Andrea Mondino (2017)

Analysis and Geometry in Metric Spaces

Similarity:

The goal of the paper is to study the angle between two curves in the framework of metric (and metric measure) spaces. More precisely, we give a new notion of angle between two curves in a metric space. Such a notion has a natural interplay with optimal transportation and is particularly well suited for metric measure spaces satisfying the curvature-dimension condition. Indeed one of the main results is the validity of the cosine formula on RCD*(K, N) metric measure spaces. As a consequence,...

Characterization of Low Dimensional RCD*(K, N) Spaces

Yu Kitabeppu, Sajjad Lakzian (2016)

Analysis and Geometry in Metric Spaces

Similarity:

In this paper,we give the characterization of metric measure spaces that satisfy synthetic lower Riemannian Ricci curvature bounds (so called RCD*(K, N) spaces) with non-empty one dimensional regular sets. In particular, we prove that the class of Ricci limit spaces with Ric ≥ K and Hausdorff dimension N and the class of RCD*(K, N) spaces coincide for N < 2 (They can be either complete intervals or circles). We will also prove a Bishop-Gromov type inequality (that is ,roughly speaking,...

On some type of curvature conditions

Mohamed Belkhelfa, Ryszard Deszcz, Małgorzata Głogowska, Marian Hotloś, Dorota Kowalczyk, Leopold Verstraelen (2002)

Banach Center Publications

Similarity:

In this paper we present a review of recent results on semi-Riemannian manifolds satisfying curvature conditions of pseudosymmetry type.

Curvature bounds for neighborhoods of self-similar sets

Steffen Winter (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In some recent work, fractal curvatures C k f ( F ) and fractal curvature measures C k f ( F , · ) , k = 0 , ... , d , have been determined for all self-similar sets F in d , for which the parallel neighborhoods satisfy a certain regularity condition and a certain rather technical curvature bound. The regularity condition is conjectured to be always satisfied, while the curvature bound has recently been shown to fail in some concrete examples. As a step towards a better understanding of its meaning, we discuss several equivalent...