A metric characterization of manifolds with boundary

Conrad Plaut

Compositio Mathematica (1992)

  • Volume: 81, Issue: 3, page 337-354
  • ISSN: 0010-437X

How to cite


Plaut, Conrad. "A metric characterization of manifolds with boundary." Compositio Mathematica 81.3 (1992): 337-354. <http://eudml.org/doc/90143>.

author = {Plaut, Conrad},
journal = {Compositio Mathematica},
keywords = {bounded curvature; Hopf-Rinow Theorem},
language = {eng},
number = {3},
pages = {337-354},
publisher = {Kluwer Academic Publishers},
title = {A metric characterization of manifolds with boundary},
url = {http://eudml.org/doc/90143},
volume = {81},
year = {1992},

AU - Plaut, Conrad
TI - A metric characterization of manifolds with boundary
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 81
IS - 3
SP - 337
EP - 354
LA - eng
KW - bounded curvature; Hopf-Rinow Theorem
UR - http://eudml.org/doc/90143
ER -


  1. [B] Busemann, H.The Geometry of Geodesics, Academic Press, New York, 1955. Zbl0112.37002MR75623
  2. [Be] Berestovskii, V.N.Introduction of a Riemann structure into certain metric spaces, Siberian Math. J., 16 (1975), 499-507. Zbl0325.53059MR400131
  3. [CE] Cheeger, J., and Ebin, D.G.Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam, 1975. Zbl0309.53035MR458335
  4. [F] Fukaya, K.A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters, J. Diff. Geo.28 (1988), 1-21. Zbl0652.53031MR950552
  5. [FY] Fukaya, K. and Yamaguchi, T.Almost non-positively curved manifolds, J. Diff. Geo.33 (1991), 67-90. Zbl0758.53024MR1085135
  6. [G] Gromov, M.Groupes of polynomial growth and expanding maps, Publ. Math. I.H.E.S. 53 (1981), 53-78. Zbl0474.20018MR623534
  7. [GLP] Gromov, M., Lafontaine, J., and Pansu, P.Structure Métrique pour les Variétés Riemanniennes, Cedic/Fernant Nathan, Paris, 1981. Zbl0509.53034MR682063
  8. [GP1] Grove, K. and Petersen, P.Bounding homotopy types by geometry, Ann. of Math.128 (1988) 195-206. Zbl0655.53032MR951512
  9. [GP2] Grove, K. and Petersen, P.Manifolds near the boundary of existence, J. Diff. Geo.33 (1991), 379-394. Zbl0729.53045MR1094462
  10. [GPW] Grove, K., Petersen, P., and Wu, J.Y.Geometric finiteness theorems via controlled topology, Invent. math.99 (1990) 205-213. Zbl0747.53033MR1029396
  11. [GW] Greene, R.E. and Wu, H.Lipschitz convergence of Riemannian manifolds, Pacific Math. J.131 (1988), 119-141. Zbl0646.53038MR917868
  12. [K] Karcher, H.Riemannian Comparison Constructions, preprint. MR1013810
  13. [N] Nikolaev, I.G.Smoothness of the metric in spaces with bilaterally bounded curvature in the sense of A. P. Aleksandrov, Siberian Math. J.24 (1983) 247-263. Zbl0547.53011
  14. [P] Peters, S.Convergence of Riemannian manifolds, Compositio Math. 62 (1987), 3-16. Zbl0618.53036MR892147
  15. [P1] Plaut, C.Almost Riemannian Spaces, J. Diff. Geo., to appear. Zbl0723.53030MR1131442
  16. [P2] Plaut, C.Metric curvature, convergence, and topological finiteness, preprint. Zbl0770.53033MR1159431
  17. [PD] Plaut, C.Riemannian Geometry of Non-Riemannian Spaces, dissertation, University of Maryland, 1989. 
  18. [R] Rinow, W.Die Innere Geometrie der Metrischen Raume, Springer-Verlag, Berlin, 1961. Zbl0096.16302MR123969

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.