The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a space of smooth functions on a convex unbounded set in ℝn admitting holomorphic extension in ℂn”

Norm and Taylor coefficients estimates of holomorphic functions in balls

Jacob Burbeam, Do Young Kwak (1991)

Annales Polonici Mathematici

Similarity:

A classical result of Hardy and Littlewood states that if f ( z ) = m = 0 a m z m is in H p , 0 < p ≤ 2, of the unit disk of ℂ, then m = 0 ( m + 1 ) p - 2 | a m | p c p f p p where c p is a positive constant depending only on p. In this paper, we provide an extension of this result to Hardy and weighted Bergman spaces in the unit ball of n , and use this extension to study some related multiplier problems in n .

Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations

Johannes Sjöstrand (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

In this work we continue the study of the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random perturbations, by treating the case of multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.