Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations
- [1] IMB, Université de Bourgogne, 9, av. A. Savary, BP 47870, FR-21078 Dijon cedex and UMR 5584 du CNRS
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 4, page 739-795
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSjöstrand, Johannes. "Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations." Annales de la faculté des sciences de Toulouse Mathématiques 18.4 (2009): 739-795. <http://eudml.org/doc/10126>.
@article{Sjöstrand2009,
abstract = {In this work we continue the study of the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random perturbations, by treating the case of multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.},
affiliation = {IMB, Université de Bourgogne, 9, av. A. Savary, BP 47870, FR-21078 Dijon cedex and UMR 5584 du CNRS},
author = {Sjöstrand, Johannes},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {eigenvalue distribution; multiplicative random perturbations; Weyl asymptotics; non-selfadjoint pseudodifferential operators},
language = {eng},
month = {10},
number = {4},
pages = {739-795},
publisher = {Université Paul Sabatier, Toulouse},
title = {Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations},
url = {http://eudml.org/doc/10126},
volume = {18},
year = {2009},
}
TY - JOUR
AU - Sjöstrand, Johannes
TI - Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/10//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 4
SP - 739
EP - 795
AB - In this work we continue the study of the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random perturbations, by treating the case of multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.
LA - eng
KW - eigenvalue distribution; multiplicative random perturbations; Weyl asymptotics; non-selfadjoint pseudodifferential operators
UR - http://eudml.org/doc/10126
ER -
References
top- Bordeaux-Montrieux (W.).— Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, Thesis, CMLS, Ecole Polytechnique, 2008. http://pastel.paristech.org/5367/.
- Dimassi (M.), Sjöstrand (J.).— Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999). Zbl0926.35002MR1735654
- Gohberg (I.C.), Krein (M.G.).— Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969). Zbl0181.13504MR246142
- Grigis (A.), Sjöstrand (J.).— Microlocal analysis for differential operators, London Math. Soc. Lecture Notes Ser., 196, Cambridge Univ. Press, (1994). Zbl0804.35001MR1269107
- Hager (M.).— Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2), p. 243-280 (2006). Zbl1131.34057MR2244217
- Hager (M.).— Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6), p. 1035-1064 (2006). Zbl1115.81032MR2267057
- Hager (M.), Sjöstrand (J.).— Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, 342(1), p. 177-243 (2008). Zbl1151.35063MR2415321
- Hörmander (L.).— Fourier integral operators I, Acta Math., 127, p. 79-183 (1971). Zbl0212.46601MR388463
- Iantchenko (A.), Sjöstrand (J.), Zworski (M.).— Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9(2-3), p. 337-362 (2002). Zbl1258.35208MR1909649
- Seeley (R.T.).— Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) p. 288-307 Amer. Math. Soc., Providence, R.I. Zbl0159.15504MR237943
- Sjöstrand (J.).— Resonances for bottles and trace formulae, Math. Nachr., 221, p. 95-149 (2001). Zbl0979.35109MR1806367
- Sjöstrand (J.), Vodev (G.).— Asymptotics of the number of Rayleigh resonances, Math. Ann. 309, p. 287-306 (1997). Zbl0890.35098MR1474193
- Sjöstrand (J.), Zworski (M.).— Fractal upper bounds on the density of semiclassical resonances, Duke Math J, 137(3), p. 381-459 (2007). Zbl1201.35189MR2309150
- Sjöstrand (J.), Zworski (M.).— Elementary linear algebra for advanced spectral problems, Annales Inst. Fourier, 57(7), p. 2095-2141 (2007). Zbl1140.15009MR2394537
- Wunsch (J.), Zworski (M.).— The FBI transform on compact manifolds, Trans. A.M.S., 353(3), p. 1151-1167 (2001). Zbl0974.35005MR1804416
Citations in EuDML Documents
top- William Bordeaux Montrieux, Johannes Sjöstrand, Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds
- Johannes Sjöstrand, Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations
- Johannes Sjöstrand, Spectral properties of non-self-adjoint operators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.