For which graphs does every edge belong to exactly two chordless cycles?
Peled, Uri N., Wu, Julin (1996)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Peled, Uri N., Wu, Julin (1996)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Fulmek, Markus (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Fujita, Shinya, Halperin, Alexander, Magnant, Colton (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Nelson, Donald, Plummer, Michael D., Robertson, Neil, Zha, Xiaoya (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Stacho, L. (1995)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Smith, Benjamin R., Cavenagh, Nicholas J. (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
McCuaig, William (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Bohdan Zelinka (1981)
Časopis pro pěstování matematiky
Similarity:
Knor, M. (1994)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Halina Bielak, Sebastian Kieliszek (2014)
Annales UMCS, Mathematica
Similarity:
Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)