For which graphs does every edge belong to exactly two chordless cycles?
Peled, Uri N., Wu, Julin (1996)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Peled, Uri N., Wu, Julin (1996)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Fulmek, Markus (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Fujita, Shinya, Halperin, Alexander, Magnant, Colton (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Nelson, Donald, Plummer, Michael D., Robertson, Neil, Zha, Xiaoya (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Stacho, L. (1995)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Smith, Benjamin R., Cavenagh, Nicholas J. (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
McCuaig, William (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Bohdan Zelinka (1981)
Časopis pro pěstování matematiky
Similarity:
Knor, M. (1994)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Halina Bielak, Sebastian Kieliszek (2014)
Annales UMCS, Mathematica
Similarity:
Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)