Displaying similar documents to “Uniform controllability for the beam equation with vanishing structural damping”

An application of the Fourier transform to optimization of continuous 2-D systems

Vitali Dymkou, Michael Dymkov (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper uses the theory of entire functions to study the linear quadratic optimization problem for a class of continuous 2D systems. We show that in some cases optimal control can be given by an analytical formula. A simple method is also proposed to find an approximate solution with preassigned accuracy. Some application to the 1D optimization problem is presented, too. The obtained results form a theoretical background for the design problem of optimal controllers for relevant processes. ...

Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type

Karine Beauchard (2011-2012)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator x 2 + | x | 2 γ y 2 ( γ > 0 ) in the rectangle ( x , y ) ( - 1 , 1 ) × ( 0 , 1 ) or with the Kolmogorov-type operator v γ x f + v 2 f ( γ { 1 , 2 } ) in the rectangle ( x , v ) 𝕋 × ( - 1 , 1 ) , under an additive control supported in an open subset ω of the space domain. We prove that the Grushin-type...

Controllability of a quantum particle in a 1D variable domain

Karine Beauchard (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function φ of the particle and the control is the length l ( t ) of the potential well. We prove the following controllability result : given φ 0 close enough to an eigenstate corresponding to the length l = 1 and φ f close enough to another eigenstate corresponding to the length l = 1 , there exists a continuous function l : [ 0 , T ] + * with T > 0 , such that l ( 0 ) = 1 and l ( T ) = 1 ,...

Uniformly convex functions II

Wancang Ma, David Minda (1993)

Annales Polonici Mathematici

Similarity:

Recently, A. W. Goodman introduced the class UCV of normalized uniformly convex functions. We present some sharp coefficient bounds for functions f(z) = z + a₂z² + a₃z³ + ... ∈ UCV and their inverses f - 1 ( w ) = w + d w ² + d w ³ + . . . . The series expansion for f - 1 ( w ) converges when | w | < ϱ f , where 0 < ϱ f depends on f. The sharp bounds on | a n | and all extremal functions were known for n = 2 and 3; the extremal functions consist of a certain function k ∈ UCV and its rotations. We obtain the sharp bounds on | a n | and all extremal functions for...