The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A linear algorithm for the two paths problem on permutation graphs”

Edge-disjoint paths in permutation graphs

C. P. Gopalakrishnan, C. Pandu Rangan (1995)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we consider the following problem. Given an undirected graph G = (V,E) and vertices s₁,t₁;s₂,t₂, the problem is to determine whether or not G admits two edge-disjoint paths P₁ and P₂ connecting s₁ with t₁ and s₂ with t₂, respectively. We give a linear (O(|V|+|E|)) algorithm to solve this problem on a permutation graph.

Efficient algorithms for minimal disjoint path problems on chordal graphs

C.P. Gopalakrishnan, C.R. Satyan, C. Pandu Rangan (1995)

Discussiones Mathematicae Graph Theory

Similarity:

Disjoint paths have applications in establishing bottleneck-free communication between processors in a network. The problem of finding minimum delay disjoint paths in a network directly reduces to the problem of finding the minimal disjoint paths in the graph which models the network. Previous results for this problem on chordal graphs were an O(|V| |E|²) algorithm for 2 edge disjoint paths and an O(|V| |E|) algorithm for 2 vertex disjoint paths. In this paper, we give an O(|V| |E|)...

Distance 2-Domination in Prisms of Graphs

Ferran Hurtado, Mercè Mora, Eduardo Rivera-Campo, Rita Zuazua (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex u ∊ (V (G) − D) and D is at most two. Let γ2(G) denote the size of a smallest distance 2-dominating set of G. For any permutation π of the vertex set of G, the prism of G with respect to π is the graph πG obtained from G and a copy G′ of G by joining u ∊ V(G) with v′ ∊ V(G′) if and only if v′ = π(u). If γ2(πG) = γ2(G) for any permutation π of V(G), then G is called a universal γ2-fixer....

On the domination number of prisms of graphs

Alewyn P. Burger, Christina M. Mynhardt, William D. Weakley (2004)

Discussiones Mathematicae Graph Theory

Similarity:

For a permutation π of the vertex set of a graph G, the graph π G is obtained from two disjoint copies G₁ and G₂ of G by joining each v in G₁ to π(v) in G₂. Hence if π = 1, then πG = K₂×G, the prism of G. Clearly, γ(G) ≤ γ(πG) ≤ 2 γ(G). We study graphs for which γ(K₂×G) = 2γ(G), those for which γ(πG) = 2γ(G) for at least one permutation π of V(G) and those for which γ(πG) = 2γ(G) for each permutation π of V(G).