On the domination number of prisms of graphs
Alewyn P. Burger; Christina M. Mynhardt; William D. Weakley
Discussiones Mathematicae Graph Theory (2004)
- Volume: 24, Issue: 2, page 303-318
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topAlewyn P. Burger, Christina M. Mynhardt, and William D. Weakley. "On the domination number of prisms of graphs." Discussiones Mathematicae Graph Theory 24.2 (2004): 303-318. <http://eudml.org/doc/270590>.
@article{AlewynP2004,
abstract = {For a permutation π of the vertex set of a graph G, the graph π G is obtained from two disjoint copies G₁ and G₂ of G by joining each v in G₁ to π(v) in G₂. Hence if π = 1, then πG = K₂×G, the prism of G. Clearly, γ(G) ≤ γ(πG) ≤ 2 γ(G). We study graphs for which γ(K₂×G) = 2γ(G), those for which γ(πG) = 2γ(G) for at least one permutation π of V(G) and those for which γ(πG) = 2γ(G) for each permutation π of V(G).},
author = {Alewyn P. Burger, Christina M. Mynhardt, William D. Weakley},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {domination; graph products; prisms of graphs},
language = {eng},
number = {2},
pages = {303-318},
title = {On the domination number of prisms of graphs},
url = {http://eudml.org/doc/270590},
volume = {24},
year = {2004},
}
TY - JOUR
AU - Alewyn P. Burger
AU - Christina M. Mynhardt
AU - William D. Weakley
TI - On the domination number of prisms of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2004
VL - 24
IS - 2
SP - 303
EP - 318
AB - For a permutation π of the vertex set of a graph G, the graph π G is obtained from two disjoint copies G₁ and G₂ of G by joining each v in G₁ to π(v) in G₂. Hence if π = 1, then πG = K₂×G, the prism of G. Clearly, γ(G) ≤ γ(πG) ≤ 2 γ(G). We study graphs for which γ(K₂×G) = 2γ(G), those for which γ(πG) = 2γ(G) for at least one permutation π of V(G) and those for which γ(πG) = 2γ(G) for each permutation π of V(G).
LA - eng
KW - domination; graph products; prisms of graphs
UR - http://eudml.org/doc/270590
ER -
References
top- [1] R. Bertolo, P.R.J. Ostergard and W.D. Weakley, An Updated Table of Binary/Ternary Mixed Covering Codes, J. Combin. Design, to appear. Zbl1054.94022
- [2] N.L. Biggs, Algebraic Graph Theory, Second Edition (Cambridge University Press, Cambridge, England, 1996). Zbl0284.05101
- [3] N.L. Biggs, Some odd graph theory, Ann. New York Acad. Sci. 319 (1979) 71-81, doi: 10.1111/j.1749-6632.1979.tb32775.x.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). Zbl0890.05002
- [5] S.M. Johnson, A new lower bound for coverings by rook domains, Utilitas Mathematica 1 (1972) 121-140. Zbl0265.05011
- [6] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38 (Amer. Math. Soc., Providence, RI, 1962).
- [7] F.S. Roberts, Applied Combinatorics (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984).
- [8] G.J.M. Van Wee, Improved Sphere Bounds On The Covering Radius Of Codes, IEEE Transactions on Information Theory 2 (1988) 237-245, doi: 10.1109/18.2632. Zbl0653.94014
Citations in EuDML Documents
top- Matthew Walsh, Fractional domination in prisms
- Christina M. Mynhardt, Mark Schurch, Paired domination in prisms of graphs
- Richard G. Gibson, Christina M. Mynhardt, Counterexample to a conjecture on the structure of bipartite partitionable graphs
- Stephen Benecke, Christina M. Mynhardt, Characterizing Cartesian fixers and multipliers
- Magdalena Lemańska, Rita Zuazua, Convex universal fixers
- Linda Eroh, Ralucca Gera, Cong X. Kang, Craig E. Larson, Eunjeong Yi, Domination in functigraphs
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.