Displaying similar documents to “A classification for maximal nonhamiltonian Burkard-Hammer graphs”

Forbidden Subgraphs for Hamiltonicity of 1-Tough Graphs

Binlong Li, Hajo J. Broersma, Shenggui Zhang (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is said to be 1-tough if for every vertex cut S of G, the number of components of G − S does not exceed |S|. Being 1-tough is an obvious necessary condition for a graph to be hamiltonian, but it is not sufficient in general. We study the problem of characterizing all graphs H such that every 1-tough H-free graph is hamiltonian. We almost obtain a complete solution to this problem, leaving H = K1 ∪ P4 as the only open case.

Heavy Subgraphs, Stability and Hamiltonicity

Binlong Li, Bo Ning (2017)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph. Adopting the terminology of Broersma et al. and Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of G contains two end-vertices each one has degree at least |V (G)|/2; and G is o-heavy if every induced claw of G contains two end-vertices with degree sum at least |V (G)| in G. In this paper, we introduce a new concept, and say that G is S-c-heavy if for a given graph S and every induced subgraph G′ of G isomorphic to S and every maximal clique...

The Ryjáček Closure and a Forbidden Subgraph

Akira Saito, Liming Xiong (2016)

Discussiones Mathematicae Graph Theory

Similarity:

The Ryjáček closure is a powerful tool in the study of Hamiltonian properties of claw-free graphs. Because of its usefulness, we may hope to use it in the classes of graphs defined by another forbidden subgraph. In this note, we give a negative answer to this hope, and show that the claw is the only forbidden subgraph that produces non-trivial results on Hamiltonicity by the use of the Ryjáček closure.

The periphery graph of a median graph

Boštjan Brešar, Manoj Changat, Ajitha R. Subhamathi, Aleksandra Tepeh (2010)

Discussiones Mathematicae Graph Theory

Similarity:

The periphery graph of a median graph is the intersection graph of its peripheral subgraphs. We show that every graph without a universal vertex can be realized as the periphery graph of a median graph. We characterize those median graphs whose periphery graph is the join of two graphs and show that they are precisely Cartesian products of median graphs. Path-like median graphs are introduced as the graphs whose periphery graph has independence number 2, and it is proved that there are...

Pₘ-saturated bipartite graphs with minimum size

Aneta Dudek, A. Paweł Wojda (2004)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is said to be H-saturated if G is H-free i.e., (G has no subgraph isomorphic to H) and adding any new edge to G creates a copy of H in G. In 1986 L. Kászonyi and Zs. Tuza considered the following problem: for given m and n find the minimum size sat(n;Pₘ) of Pₘ-saturated graph of order n. They gave the number sat(n;Pₘ) for n big enough. We deal with similar problem for bipartite graphs.

A Note on Total Graphs

S.F. Forouhandeh, N. Jafari Rad, B.H. Vaqari Motlagh, H.P. Patil, R. Pandiya Raj (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Erratum Identification and corrections of the existing mistakes in the paper On the total graph of Mycielski graphs, central graphs and their covering numbers, Discuss. Math. Graph Theory 33 (2013) 361-371.