An extremal property of Turán graphs.
Lazebnik, Felix, Tofts, Spencer (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Lazebnik, Felix, Tofts, Spencer (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
William F. Klostermeyer, Gary MacGillivray (2004)
Discussiones Mathematicae Graph Theory
Similarity:
We examine subgraphs of oriented graphs in the context of oriented coloring that are analogous to cliques in traditional vertex coloring. Bounds on the sizes of these subgraphs are given for planar, outerplanar, and series-parallel graphs. In particular, the main result of the paper is that a planar graph cannot contain an induced subgraph D with more than 36 vertices such that each pair of vertices in D are joined by a directed path of length at most two.
Chao, Chong-Yun (2001)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Grytczuk, Jarosław (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Xu, Xiaodong, Luo, Haipeng, Shao, Zehui (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Nedialkov, Evgeni, Nenov, Nedyalko (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Robert Fidytek, Hanna Furmańczyk, Paweł Żyliński (2009)
Discussiones Mathematicae Graph Theory
Similarity:
The Kneser graph K(n,k) is the graph whose vertices correspond to k-element subsets of set {1,2,...,n} and two vertices are adjacent if and only if they represent disjoint subsets. In this paper we study the problem of equitable coloring of Kneser graphs, namely, we establish the equitable chromatic number for graphs K(n,2) and K(n,3). In addition, for sufficiently large n, a tight upper bound on equitable chromatic number of graph K(n,k) is given. Finally, the cases of K(2k,k) and K(2k+1,k)...
Jean-Sébastien Sereni, Zelealem B. Yilma (2013)
Discussiones Mathematicae Graph Theory
Similarity:
We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
Hujter, M., Tuza, Zs. (1993)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Fischer, Eldar (1999)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Brice Effantin, Hamamache Kheddouci (2007)
Discussiones Mathematicae Graph Theory
Similarity:
The Grundy number of a graph G is the maximum number k of colors used to color the vertices of G such that the coloring is proper and every vertex x colored with color i, 1 ≤ i ≤ k, is adjacent to (i-1) vertices colored with each color j, 1 ≤ j ≤ i -1. In this paper we give bounds for the Grundy number of some graphs and cartesian products of graphs. In particular, we determine an exact value of this parameter for n-dimensional meshes and some n-dimensional toroidal meshes. Finally,...
Kratochvíl, J. (1993)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Tomáš Vetrík (2012)
Discussiones Mathematicae Graph Theory
Similarity:
The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.
Xin Zhang, Yong Yu, Guizhen Liu (2011)
Open Mathematics
Similarity:
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that the (p, 1)-total labelling number of every 1-planar graph G is at most Δ(G) + 2p − 2 provided that Δ(G) ≥ 8p+4 or Δ(G) ≥ 6p+2 and g(G) ≥ 4. As a consequence, the well-known (p, 1)-total labelling conjecture has been confirmed for some 1-planar graphs.