Displaying similar documents to “Hamilton cycles in split graphs with large minimum degree”

Cycles in graphs and related problems

Antoni Marczyk

Similarity:

Our aim is to survey results in graph theory centered around four themes: hamiltonian graphs, pancyclic graphs, cycles through vertices and the cycle structure in a graph. We focus on problems related to the closure result of Bondy and Chvátal, which is a common generalization of two fundamental theorems due to Dirac and Ore. We also describe a number of proof techniques in this domain. Aside from the closure operation we give some applications of Ramsey theory in the research of cycle...

Chvátal-Erdos condition and pancyclism

Evelyne Flandrin, Hao Li, Antoni Marczyk, Ingo Schiermeyer, Mariusz Woźniak (2006)

Discussiones Mathematicae Graph Theory

Similarity:

The well-known Chvátal-Erdős theorem states that if the stability number α of a graph G is not greater than its connectivity then G is hamiltonian. In 1974 Erdős showed that if, additionally, the order of the graph is sufficiently large with respect to α, then G is pancyclic. His proof is based on the properties of cycle-complete graph Ramsey numbers. In this paper we show that a similar result can be easily proved by applying only classical Ramsey numbers.

Hamilton decompositions of line graphs of some bipartite graphs

David A. Pike (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Some bipartite Hamilton decomposable graphs that are regular of degree δ ≡ 2 (mod 4) are shown to have Hamilton decomposable line graphs. One consequence is that every bipartite Hamilton decomposable graph G with connectivity κ(G) = 2 has a Hamilton decomposable line graph L(G).

Light Graphs In Planar Graphs Of Large Girth

Peter Hudák, Mária Maceková, Tomáš Madaras, Pavol Široczki (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A graph H is defined to be light in a graph family 𝒢 if there exist finite numbers φ(H, 𝒢) and w(H, 𝒢) such that each G ∈ 𝒢 which contains H as a subgraph, also contains its isomorphic copy K with ΔG(K) ≤ φ(H, 𝒢) and ∑x∈V(K) degG(x) ≤ w(H, 𝒢). In this paper, we investigate light graphs in families of plane graphs of minimum degree 2 with prescribed girth and no adjacent 2-vertices, specifying several necessary conditions for their lightness and providing sharp bounds on φ and w...

The Ryjáček Closure and a Forbidden Subgraph

Akira Saito, Liming Xiong (2016)

Discussiones Mathematicae Graph Theory

Similarity:

The Ryjáček closure is a powerful tool in the study of Hamiltonian properties of claw-free graphs. Because of its usefulness, we may hope to use it in the classes of graphs defined by another forbidden subgraph. In this note, we give a negative answer to this hope, and show that the claw is the only forbidden subgraph that produces non-trivial results on Hamiltonicity by the use of the Ryjáček closure.

Note on enumeration of labeled split graphs

Vladislav Bína, Jiří Přibil (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper brings explicit formula for enumeration of vertex-labeled split graphs with given number of vertices. The authors derive this formula combinatorially using an auxiliary assertion concerning number of split graphs with given clique number. In conclusion authors discuss enumeration of vertex-labeled bipartite graphs, i.e., a graphical class defined in a similar manner to the class of split graphs.