Displaying similar documents to “Odd and residue domination numbers of a graph”

Partitioning a graph into a dominating set, a total dominating set, and something else

Michael A. Henning, Christian Löwenstein, Dieter Rautenbach (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A recent result of Henning and Southey (A note on graphs with disjoint dominating and total dominating set, Ars Comb. 89 (2008), 159-162) implies that every connected graph of minimum degree at least three has a dominating set D and a total dominating set T which are disjoint. We show that the Petersen graph is the only such graph for which D∪T necessarily contains all vertices of the graph.

A Gallai-type equality for the total domination number of a graph

Sanming Zhou (2004)

Discussiones Mathematicae Graph Theory

Similarity:

We prove the following Gallai-type equality γₜ(G) + εₜ(G) = p for any graph G with no isolated vertex, where p is the number of vertices of G, γₜ(G) is the total domination number of G, and εₜ(G) is the maximum integer s such that there exists a spanning forest F with s the number of pendant edges of F minus the number of star components of F.

Domination Parameters of a Graph and its Complement

Wyatt J. Desormeaux, Teresa W. Haynes, Michael A. Henning (2018)

Discussiones Mathematicae Graph Theory

Similarity:

A dominating set in a graph G is a set S of vertices such that every vertex in V (G) S is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.

On the Totalk-Domination in Graphs

Sergio Bermudo, Juan C. Hernández-Gómez, José M. Sigarreta (2018)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V, E) be a graph; a set S ⊆ V is a total k-dominating set if every vertex v ∈ V has at least k neighbors in S. The total k-domination number γkt(G) is the minimum cardinality among all total k-dominating sets. In this paper we obtain several tight bounds for the total k-domination number of a graph. In particular, we investigate the relationship between the total k-domination number of a graph and the order, the size, the girth, the minimum and maximum degree, the diameter,...

On the p-domination number of cactus graphs

Mostafa Blidia, Mustapha Chellali, Lutz Volkmann (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let p be a positive integer and G = (V,E) a graph. A subset S of V is a p-dominating set if every vertex of V-S is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number γₚ(G). It is proved for a cactus graph G that γₚ(G) ⩽ (|V| + |Lₚ(G)| + c(G))/2, for every positive integer p ⩾ 2, where Lₚ(G) is the set of vertices of G of degree at most p-1 and c(G) is the number of odd cycles in G.

The bondage number of graphs: good and bad vertices

Vladimir Samodivkin (2008)

Discussiones Mathematicae Graph Theory

Similarity:

The domination number γ(G) of a graph G is the minimum number of vertices in a set D such that every vertex of the graph is either in D or is adjacent to a member of D. Any dominating set D of a graph G with |D| = γ(G) is called a γ-set of G. A vertex x of a graph G is called: (i) γ-good if x belongs to some γ-set and (ii) γ-bad if x belongs to no γ-set. The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph...

Hereditary domination and independence parameters

Wayne Goddard, Teresa Haynes, Debra Knisley (2004)

Discussiones Mathematicae Graph Theory

Similarity:

For a graphical property P and a graph G, we say that a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. Then the P-domination number of G is the minimum cardinality of a dominating P-set and the P-independence number the maximum cardinality of a P-set. We show that several properties of domination, independent domination and acyclic domination hold for arbitrary properties P that are closed under disjoint unions and subgraphs.

Various Bounds for Liar’s Domination Number

Abdollah Alimadadi, Doost Ali Mojdeh, Nader Jafari Rad (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A set S ⊆ V is a dominating set if Uv∈S N[v] = V , where N[v] is the closed neighborhood of v. Let L ⊆ V be a dominating set, and let v be a designated vertex in V (an intruder vertex). Each vertex in L ∩ N[v] can report that v is the location of the intruder, but (at most) one x ∈ L ∩ N[v] can report any w ∈ N[x] as the intruder location or x can indicate that there is no intruder in N[x]. A dominating set L is called a liar’s dominating set if every v ∈ V...

Signed and minus domination in bipartite graphs

Bohdan Zelinka (2006)

Czechoslovak Mathematical Journal

Similarity:

The paper studies the signed domination number and the minus domination number of the complete bipartite graph K p , q .

Graphs with disjoint dominating and paired-dominating sets

Justin Southey, Michael Henning (2010)

Open Mathematics

Similarity:

A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent to a vertex in the set, while a paired-dominating set of a graph is a dominating set such that the subgraph induced by the dominating set contains a perfect matching. In this paper, we show that no minimum degree is sufficient to guarantee the existence of a disjoint dominating set and a paired-dominating set. However, we prove that the vertex set of every cubic graph can be partitioned...

On the existence of a cycle of length at least 7 in a (1,≤ 2)-twin-free graph

David Auger, Irène Charon, Olivier Hudry, Antoine Lobstein (2010)

Discussiones Mathematicae Graph Theory

Similarity:

We consider a simple, undirected graph G. The ball of a subset Y of vertices in G is the set of vertices in G at distance at most one from a vertex in Y. Assuming that the balls of all subsets of at most two vertices in G are distinct, we prove that G admits a cycle with length at least 7.

Connected odd dominating sets in graphs

Yair Caro, William F. Klostermeyer, Raphael Yuster (2005)

Discussiones Mathematicae Graph Theory

Similarity:

An odd dominating set of a simple, undirected graph G = (V,E) is a set of vertices D ⊆ V such that |N[v] ∩ D| ≡ 1 mod 2 for all vertices v ∈ V. It is known that every graph has an odd dominating set. In this paper we consider the concept of connected odd dominating sets. We prove that the problem of deciding if a graph has a connected odd dominating set is NP-complete. We also determine the existence or non-existence of such sets in several classes of graphs. Among other results, we...

Domination in Kneser graphs

Jaroslav Ivančo, Bohdan Zelinka (1993)

Mathematica Bohemica

Similarity:

The domination number and the domatic number of a certain special type of Kneser graphs are determined.