Displaying similar documents to “Determinants and inverses of circulant matrices with complex Fibonacci numbers”

On the arrowhead-Fibonacci numbers

Inci Gültekin, Ömür Deveci (2016)

Open Mathematics

Similarity:

In this paper, we define the arrowhead-Fibonacci numbers by using the arrowhead matrix of the characteristic polynomial of the k-step Fibonacci sequence and then we give some of their properties. Also, we study the arrowhead-Fibonacci sequence modulo m and we obtain the cyclic groups from the generating matrix of the arrowhead-Fibonacci numbers when read modulo m. Then we derive the relationships between the orders of the cyclic groups obtained and the periods of the arrowhead-Fibonacci...

Explicit formulas for the constituent matrices. Application to the matrix functions

R. Ben Taher, M. Rachidi (2015)

Special Matrices

Similarity:

We present a constructive procedure for establishing explicit formulas of the constituents matrices. Our approach is based on the tools and techniques from the theory of generalized Fibonacci sequences. Some connections with other results are supplied. Furthermore,we manage to provide tractable expressions for the matrix functions, and for illustration purposes we establish compact formulas for both the matrix logarithm and the matrix pth root. Some examples are also provided. ...

An inequality for Fibonacci numbers

Horst Alzer, Florian Luca (2022)

Mathematica Bohemica

Similarity:

We extend an inequality for Fibonacci numbers published by P. G. Popescu and J. L. Díaz-Barrero in 2006.

The k-Fibonacci matrix and the Pascal matrix

Sergio Falcon (2011)

Open Mathematics

Similarity:

We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.

Gelin-Cesáro identities for Fibonacci and Lucas quaternions

Ahmet Daşdemir (2019)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

To date, many identities of different quaternions, including the Fibonacci and Lucas quaternions, have been investigated. In this study, we present Gelin-Cesáro identities for Fibonacci and Lucas quaternions. The identities are a worthy addition to the literature. Moreover, we give Catalan's identity for the Lucas quaternions.