The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Value sets of graphs edge-weighted with elements of a finite abelian group”

Labeling the vertex amalgamation of graphs

Ramon M. Figueroa-Centeno, Rikio Ichishima, Francesc A. Muntaner-Batle (2003)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G of size q is graceful if there exists an injective function f:V(G)→ 0,1,...,q such that each edge uv of G is labeled |f(u)-f(v)| and the resulting edge labels are distinct. Also, a (p,q) graph G with q ≥ p is harmonious if there exists an injective function f : V ( G ) Z q such that each edge uv of G is labeled f(u) + f(v) mod q and the resulting edge labels are distinct, whereas G is felicitous if there exists an injective function f : V ( G ) Z q + 1 such that each edge uv of G is labeled f(u) + f(v) mod...

Median of a graph with respect to edges

A.P. Santhakumaran (2012)

Discussiones Mathematicae Graph Theory

Similarity:

For any vertex v and any edge e in a non-trivial connected graph G, the distance sum d(v) of v is d ( v ) = u V d ( v , u ) , the vertex-to-edge distance sum d₁(v) of v is d ( v ) = e E d ( v , e ) , the edge-to-vertex distance sum d₂(e) of e is d ( e ) = v V d ( e , v ) and the edge-to-edge distance sum d₃(e) of e is d ( e ) = f E d ( e , f ) . The set M(G) of all vertices v for which d(v) is minimum is the median of G; the set M₁(G) of all vertices v for which d₁(v) is minimum is the vertex-to-edge median of G; the set M₂(G) of all edges e for which d₂(e) is minimum is the edge-to-vertex...

New edge neighborhood graphs

Ali A. Ali, Salar Y. Alsardary (1997)

Czechoslovak Mathematical Journal

Similarity:

Let G be an undirected simple connected graph, and e = u v be an edge of G . Let N G ( e ) be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to u or v . Let 𝒩 e be the class of all graphs H such that, for some graph G , N G ( e ) H for every edge e of G . Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in 𝒩 e . Balasubramanian and Alsardary [1] obtained some other graphs in 𝒩 e . In this paper we given some new graphs in 𝒩 e .

On signed edge domination numbers of trees

Bohdan Zelinka (2002)

Mathematica Bohemica

Similarity:

The signed edge domination number of a graph is an edge variant of the signed domination number. The closed neighbourhood N G [ e ] of an edge e in a graph G is the set consisting of e and of all edges having a common end vertex with e . Let f be a mapping of the edge set E ( G ) of G into the set { - 1 , 1 } . If x N [ e ] f ( x ) 1 for each e E ( G ) , then f is called a signed edge dominating function on G . The minimum of the values x E ( G ) f ( x ) , taken over all signed edge dominating function f on G , is called the signed edge domination number...

Graceful signed graphs

Mukti Acharya, Tarkeshwar Singh (2004)

Czechoslovak Mathematical Journal

Similarity:

A ( p , q ) -sigraph S is an ordered pair ( G , s ) where G = ( V , E ) is a ( p , q ) -graph and s is a function which assigns to each edge of G a positive or a negative sign. Let the sets E + and E - consist of m positive and n negative edges of G , respectively, where m + n = q . Given positive integers k and d , S is said to be ( k , d ) -graceful if the vertices of G can be labeled with distinct integers from the set { 0 , 1 , , k + ( q - 1 ) d } such that when each edge u v of G is assigned the product of its sign and the absolute difference of the integers assigned to...

Decomposition of complete graphs into ( 0 , 2 ) -prisms

Sylwia Cichacz, Soleh Dib, Dalibor Fronček (2014)

Czechoslovak Mathematical Journal

Similarity:

R. Frucht and J. Gallian (1988) proved that bipartite prisms of order 2 n have an α -labeling, thus they decompose the complete graph K 6 n x + 1 for any positive integer x . We use a technique called the ρ + -labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order 2 n called generalized prisms decompose the complete graph K 6 n x + 1 for any positive integer x .