Decomposition of complete graphs into -prisms
Sylwia Cichacz; Soleh Dib; Dalibor Fronček
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 37-43
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCichacz, Sylwia, Dib, Soleh, and Fronček, Dalibor. "Decomposition of complete graphs into $(0,2)$-prisms." Czechoslovak Mathematical Journal 64.1 (2014): 37-43. <http://eudml.org/doc/261980>.
@article{Cichacz2014,
abstract = {R. Frucht and J. Gallian (1988) proved that bipartite prisms of order $2n$ have an $\alpha $-labeling, thus they decompose the complete graph $K_\{6nx+1\}$ for any positive integer $x$. We use a technique called the $\rho ^\{+\}$-labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order $2n$ called generalized prisms decompose the complete graph $K_\{6nx+1\}$ for any positive integer $x$.},
author = {Cichacz, Sylwia, Dib, Soleh, Fronček, Dalibor},
journal = {Czechoslovak Mathematical Journal},
keywords = {decompositions; prism; $\rho ^+$-labeling; decompositions; prism; $\varrho ^+$-labeling},
language = {eng},
number = {1},
pages = {37-43},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Decomposition of complete graphs into $(0,2)$-prisms},
url = {http://eudml.org/doc/261980},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Cichacz, Sylwia
AU - Dib, Soleh
AU - Fronček, Dalibor
TI - Decomposition of complete graphs into $(0,2)$-prisms
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 37
EP - 43
AB - R. Frucht and J. Gallian (1988) proved that bipartite prisms of order $2n$ have an $\alpha $-labeling, thus they decompose the complete graph $K_{6nx+1}$ for any positive integer $x$. We use a technique called the $\rho ^{+}$-labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order $2n$ called generalized prisms decompose the complete graph $K_{6nx+1}$ for any positive integer $x$.
LA - eng
KW - decompositions; prism; $\rho ^+$-labeling; decompositions; prism; $\varrho ^+$-labeling
UR - http://eudml.org/doc/261980
ER -
References
top- Cichacz, S., Froncek, D., 10.1016/j.ipl.2009.04.024, Inf. Process. Lett. 109 (2009), 932-934. (2009) Zbl1197.05116MR2541974DOI10.1016/j.ipl.2009.04.024
- Cichacz, S., Fronček, D., Kovář, P., 10.1007/978-3-642-10217-2_15, Combinatorial Algorithms Lecture Notes in Computer Science 5874 Springer, Berlin (2009), 125-133. (2009) Zbl1267.05203MR2577931DOI10.1007/978-3-642-10217-2_15
- Cichacz, S., Fronček, D., Kovář, P., 10.1016/j.ejc.2012.07.018, Eur. J. Comb. 34 (2013), 104-110. (2013) Zbl1256.05184MR2974274DOI10.1016/j.ejc.2012.07.018
- El-Zanati, S. I., Eynden, C. Vanden, Punnim, N., On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Comb. 24 (2001), 209-219. (2001) MR1852820
- Frucht, R., Gallian, J., Labeling prisms, Ars Comb. 26 (1988), 69-82. (1988) Zbl0678.05053MR0982109
- Huang, J. H., Skiena, S., Gracefully labeling prisms, Ars Comb. 38 (1994), 225-242. (1994) Zbl0818.05056MR1310422
- Jungreis, D. S., Reid, M., Labeling grids, Ars Comb. 34 (1992), 167-182. (1992) Zbl0774.05087MR1206560
- Rosa, A., On certain valuations of the vertices of a graph, Theory of Graphs Int. Symp. Rome 1966 (1967), 349-355. (1967) Zbl0193.53204MR0223271
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.