### On the solution of Nevanlinna Pick problem with selfadjoint extensions of symmetric linear relations in Hilbert space.

El-Sabbagh, A.A. (1997)

International Journal of Mathematics and Mathematical Sciences

Similarity:

El-Sabbagh, A.A. (1997)

International Journal of Mathematics and Mathematical Sciences

Similarity:

T. K. Pal, M. Maiti, J. Achari (1976)

Matematički Vesnik

Similarity:

A. Błaszczyk, U. Lorek (1978)

Colloquium Mathematicae

Similarity:

Paweł Szeptycki (1975)

Studia Mathematica

Similarity:

Kostenko, A.S. (2005)

Zapiski Nauchnykh Seminarov POMI

Similarity:

D. W. Hajek (1986)

Matematički Vesnik

Similarity:

Earl A. Coddington, S.V. de Snoo (1978)

Mathematische Zeitschrift

Similarity:

A. Torgašev (1976)

Matematički Vesnik

Similarity:

F.-H. Vasilescu (2007)

Banach Center Publications

Similarity:

H. A. Antosiewicz, A. Cellina (1977)

Annales Polonici Mathematici

Similarity:

M. R. Koushesh

Similarity:

Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace. For an extension Y of X the subspace Y∖X of Y is called the remainder of Y. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise. For two (equivalence classes of) extensions Y and Y' of X let Y ≤ Y' if there is a continuous mapping of Y' into Y which fixes X pointwise. Let 𝓟 be a topological property. An extension Y of X is called a 𝓟-extension...

J. M. Aarts (1971)

Colloquium Mathematicae

Similarity:

Jocić, Danko (1989)

Publications de l'Institut Mathématique. Nouvelle Série

Similarity:

Mikaël Lescop (2004)

Acta Arithmetica

Similarity:

O. V. Lopushansky, A. V. Zagorodnyuk (2003)

Annales Polonici Mathematici

Similarity:

We study spaces of analytic functions generated by homogeneous polynomials from the dual space to the symmetric Hilbertian tensor product of a Hilbert space. In particular, we introduce an analogue of the classical Hardy space H² on the Hilbert unit ball and investigate spectral decomposition of unitary operators on this space. Also we prove a Wiener-type theorem for an algebra of analytic functions on the Hilbert unit ball.