The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Mácajová and Škoviera conjecture on cubic graphs”

Cores, Joins and the Fano-Flow Conjectures

Ligang Jin, Eckhard Steffen, Giuseppe Mazzuoccolo (2018)

Discussiones Mathematicae Graph Theory

Similarity:

The Fan-Raspaud Conjecture states that every bridgeless cubic graph has three 1-factors with empty intersection. A weaker one than this conjecture is that every bridgeless cubic graph has two 1-factors and one join with empty intersection. Both of these two conjectures can be related to conjectures on Fano-flows. In this paper, we show that these two conjectures are equivalent to some statements on cores and weak cores of a bridgeless cubic graph. In particular, we prove that the Fan-Raspaud...

Some recent results on domination in graphs

Michael D. Plummer (2006)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, we survey some new results in four areas of domination in graphs, namely: (1) the toughness and matching structure of graphs having domination number 3 and which are "critical" in the sense that if one adds any missing edge, the domination number falls to 2; (2) the matching structure of graphs having domination number 3 and which are "critical" in the sense that if one deletes any vertex, the domination number falls to 2; ...

On generating snarks

Busiso P. Chisala (1998)

Discussiones Mathematicae Graph Theory

Similarity:

We discuss the construction of snarks (that is, cyclically 4-edge connected cubic graphs of girth at least five which are not 3-edge colourable) by using what we call colourable snark units and a welding process.

On the Erdős-Gyárfás Conjecture in Claw-Free Graphs

Pouria Salehi Nowbandegani, Hossein Esfandiari, Mohammad Hassan Shirdareh Haghighi, Khodakhast Bibak (2014)

Discussiones Mathematicae Graph Theory

Similarity:

The Erdős-Gyárfás conjecture states that every graph with minimum degree at least three has a cycle whose length is a power of 2. Since this conjecture has proven to be far from reach, Hobbs asked if the Erdős-Gyárfás conjecture holds in claw-free graphs. In this paper, we obtain some results on this question, in particular for cubic claw-free graphs

Complete minors, independent sets, and chordal graphs

József Balogh, John Lenz, Hehui Wu (2011)

Discussiones Mathematicae Graph Theory

Similarity:

The Hadwiger number h(G) of a graph G is the maximum size of a complete minor of G. Hadwiger's Conjecture states that h(G) ≥ χ(G). Since χ(G) α(G) ≥ |V(G)|, Hadwiger's Conjecture implies that α(G) h(G) ≥ |V(G)|. We show that (2α(G) - ⌈log_{τ}(τα(G)/2)⌉) h(G) ≥ |V(G)| where τ ≍ 6.83. For graphs with α(G) ≥ 14, this improves on a recent result of Kawarabayashi and Song who showed (2α(G) - 2) h(G) ≥ |V(G) | when α(G) ≥ 3.

Some remarks on Jaeger's dual-hamiltonian conjecture

Bill Jackson, Carol A. Whitehead (1999)

Annales de l'institut Fourier

Similarity:

François Jaeger conjectured in 1974 that every cyclically 4-connected cubic graph G is dual hamiltonian, that is to say the vertices of G can be partitioned into two subsets such that each subset induces a tree in G . We shall make several remarks on this conjecture.

A Survey of the Path Partition Conjecture

Marietjie Frick (2013)

Discussiones Mathematicae Graph Theory

Similarity:

The Path Partition Conjecture (PPC) states that if G is any graph and (λ1, λ2) any pair of positive integers such that G has no path with more than λ1 + λ2 vertices, then there exists a partition (V1, V2) of the vertex set of G such that Vi has no path with more than λi vertices, i = 1, 2. We present a brief history of the PPC, discuss its relation to other conjectures and survey results on the PPC that have appeared in the literature since its first formulation in 1981.