The excessive [3]-index of all graphs.
Cariolaro, David, Fu, Hung-Lin (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Cariolaro, David, Fu, Hung-Lin (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Leila Asgharsharghi, Seyed Mahmoud Sheikholeslami, Lutz Volkmann (2017)
Discussiones Mathematicae Graph Theory
Similarity:
Let k ≥ 1 be an integer, and G = (V, E) be a finite and simple graph. The closed neighborhood NG[e] of an edge e in a graph G is the set consisting of e and all edges having a common end-vertex with e. A signed Roman edge k-dominating function (SREkDF) on a graph G is a function f : E → {−1, 1, 2} satisfying the conditions that (i) for every edge e of G, ∑x∈NG[e] f(x) ≥ k and (ii) every edge e for which f(e) = −1 is adjacent to at least one edge e′ for which f(e′) = 2. The minimum of...
Bohdan Zelinka (1987)
Czechoslovak Mathematical Journal
Similarity:
Muhammad Javaid (2014)
Discussiones Mathematicae Graph Theory
Similarity:
In 1980, Enomoto et al. proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In this paper, we give a partial sup- port for the correctness of this conjecture by formulating some super (a, d)- edge-antimagic total labelings on a subclass of subdivided stars denoted by T(n, n + 1, 2n + 1, 4n + 2, n5, n6, . . . , nr) for different values of the edge- antimagic labeling parameter d, where n ≥ 3 is odd, nm = 2m−4(4n+1)+1, r ≥ 5 and 5 ≤ m ≤ r.
Bohdan Zelinka (1975)
Matematický časopis
Similarity:
P. Roushini Leely Pushpam, A. Saibulla (2012)
Discussiones Mathematicae Graph Theory
Similarity:
A (p, q)-graph G is (a,d)-edge antimagic total if there exists a bijection f: V(G) ∪ E(G) → {1, 2,...,p + q} such that the edge weights Λ(uv) = f(u) + f(uv) + f(v), uv ∈ E(G) form an arithmetic progression with first term a and common difference d. It is said to be a super (a, d)-edge antimagic total if the vertex labels are {1, 2,..., p} and the edge labels are {p + 1, p + 2,...,p + q}. In this paper, we study the super (a,d)-edge antimagic total labeling of special classes of graphs...
Jozef Fiamčík (1984)
Archivum Mathematicum
Similarity:
Sana Javed, Mujtaba Hussain, Ayesha Riasat, Salma Kanwal, Mariam Imtiaz, M. O. Ahmad (2017)
Open Mathematics
Similarity:
An edge-magic total labeling of an (n,m)-graph G = (V,E) is a one to one map λ from V(G) ∪ E(G) onto the integers {1,2,…,n + m} with the property that there exists an integer constant c such that λ(x) + λ(y) + λ(xy) = c for any xy ∈ E(G). It is called super edge-magic total labeling if λ (V(G)) = {1,2,…,n}. Furthermore, if G has no super edge-magic total labeling, then the minimum number of vertices added to G to have a super edge-magic total labeling, called super edge-magic deficiency...