Displaying similar documents to “Optimization of plunger cavity”

Numerical solution of the pressing devices shape optimization problem in the glass industry

Petr Salač (2018)

Applications of Mathematics

Similarity:

In this contribution, we present the problem of shape optimization of the plunger cooling which comes from the forming process in the glass industry. We look for a shape of the inner surface of the insulation barrier located in the plunger cavity so as to achieve a constant predetermined temperature on the outward surface of the plunger. A rotationally symmetric system, composed of the mould, the glass piece, the plunger, the insulation barrier and the plunger cavity, is considered....

Optimal Convective Heat-Transport

Josef Dalík, Oto Přibyl (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The one-dimensional steady-state convection-diffusion problem for the unknown temperature y ( x ) of a medium entering the interval ( a , b ) with the temperature y min and flowing with a positive velocity v ( x ) is studied. The medium is being heated with an intensity corresponding to y max - y ( x ) for a constant y max > y min . We are looking for a velocity v ( x ) with a given average such that the outflow temperature y ( b ) is maximal and discuss the influence of the boundary condition at the point b on the “maximizing” function v ( x ) . ...

Shape optimization for a time-dependent model of a carousel press in glass production

Petr Salač, Jan Stebel (2019)

Applications of Mathematics

Similarity:

This contribution presents the shape optimization problem of the plunger cooling cavity for the time dependent model of pressing the glass products. The system of the mould, the glass piece, the plunger and the plunger cavity is considered in four consecutive time intervals during which the plunger moves between 6 glass moulds. The state problem is represented by the steady-state Navier-Stokes equations in the cavity and the doubly periodic energy equation in the whole system, under...

Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions

Ladislav Foltyn, Dalibor Lukáš, Ivo Peterek (2020)

Applications of Mathematics

Similarity:

We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent...

Heat kernel estimates for the Dirichlet fractional Laplacian

Zhen-Qing Chen, Panki Kim, Renming Song (2010)

Journal of the European Mathematical Society

Similarity:

We consider the fractional Laplacian - ( - Δ ) α / 2 on an open subset in d with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet fractional Laplacian in C 1 , 1 open sets. This heat kernel is also the transition density of a rotationally symmetric α -stable process killed upon leaving a C 1 , 1 open set. Our results are the first sharp twosided estimates for the Dirichlet heat kernel of a non-local operator on open sets.

Optimal design of the cooling plunger cavity

Petr Salač (2013)

Applications of Mathematics

Similarity:

An axisymmetric system of mould, glass piece, plunger and plunger cavity is considered. The state problem is given as a stationary head conduction process. The system includes the glass piece representing the heat source and is cooled inside the plunger cavity by flowing water and outside by the environment of the mould. The design variable is taken to be the shape of the inner surface of the plunger cavity. The cost functional is the second power of the norm in the weighted space L r 2 ...

Mathematical and physical aspects of the initial value problem for a nonlocal model of heat propagation with finite speed

Jerzy A. Gawinecki, Agnieszka Gawinecka, Jarosław Łazuka, J. Rafa (2013)

Applicationes Mathematicae

Similarity:

Theories of heat predicting a finite speed of propagation of thermal signals have come into existence during the last 50 years. It is worth emphasizing that in contrast to the classical heat theory, these nonclassical theories involve a hyperbolic type heat equation and are based on experiments exhibiting the actual occurrence of wave-type heat transport (so called second sound). This paper presents a new system of equations describing a nonlocal model of heat propagation with finite...

Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation

Todor Gramchev, Grzegorz Łysik (2008)

Banach Center Publications

Similarity:

We study the Gevrey regularity down to t = 0 of solutions to the initial value problem for a semilinear heat equation t u - Δ u = u M . The approach is based on suitable iterative fixed point methods in L p based Banach spaces with anisotropic Gevrey norms with respect to the time and the space variables. We also construct explicit solutions uniformly analytic in t ≥ 0 and x ∈ ℝⁿ for some conservative nonlinear terms with symmetries.

Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths

Joel M. Cohen, Mauro Pagliacci, Massimo A. Picardello (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

We compute recursively the heat semigroup in a rooted homogeneous tree for the diffusion with radial (with respect to the root) but non-isotropic transition probabilities. This is the discrete analogue of the heat operator on the disc given by Δ + c r for some constant c that represents a drift towards (or away from) the origin.