Displaying similar documents to “Complexity and memory requirements of an algorithm for solving saddle-point linear systems with singular blocks”

Complexity of an algorithm for solving saddle-point systems with singular blocks arising in wavelet-Galerkin discretizations

Radek Kučera (2005)

Applications of Mathematics

Similarity:

The paper deals with fast solving of large saddle-point systems arising in wavelet-Galerkin discretizations of separable elliptic PDEs. The periodized orthonormal compactly supported wavelets of the tensor product type together with the fictitious domain method are used. A special structure of matrices makes it possible to utilize the fast Fourier transform that determines the complexity of the algorithm. Numerical experiments confirm theoretical results.

Wavelets and prediction in time series

Mošová, Vratislava

Similarity:

Wavelets (see [2, 3, 4]) are a recent mathematical tool that is applied in signal processing, numerical mathematics and statistics. The wavelet transform allows to follow data in the frequency as well as time domain, to compute efficiently the wavelet coefficients using fast algorithm, to separate approximations from details. Due to these properties, the wavelet transform is suitable for analyzing and forecasting in time series. In this paper, Box-Jenkins models (see [1, 5]) combined...

A cryptography using lifting scheme integer wavelet transform over min-max-plus algebra

Mahmud Yunus, Mohamad Ilham Dwi Firmansyah, Kistosil Fahim Subiono (2024)

Kybernetika

Similarity:

We propose a cryptographic algorithm utilizing integer wavelet transform via a lifting scheme. In this research, we construct some predict and update operators within the lifting scheme of wavelet transforms employing operations in min-max-plus algebra, termed as lifting scheme integer wavelet transform over min-max-plus algebra (MMPLS-IWavelet). The analysis and synthesis process on MMPLS-IWavelet is implemented for both encryption and decryption processes. The encryption key comprises...

Approximate multiplication in adaptive wavelet methods

Dana Černá, Václav Finěk (2013)

Open Mathematics

Similarity:

Cohen, Dahmen and DeVore designed in [Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp., 2001, 70(233), 27–75] and [Adaptive wavelet methods II¶beyond the elliptic case, Found. Comput. Math., 2002, 2(3), 203–245] a general concept for solving operator equations. Its essential steps are: transformation of the variational formulation into the well-conditioned infinite-dimensional l 2-problem, finding the convergent iteration process for the l 2-problem...