Displaying similar documents to “Three-dimensional numerical model of neutron flux in hex-Z geometry”

Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies

Max Duarte, Marc Massot, Stéphane Descombes (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we investigate the coupling between operator splitting techniques and a time parallelization scheme, the parareal algorithm, as a numerical strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in...

Solution of contaminant transport with adsorption in porous media by the method of characteristics

Jozef Kacur, Roger Van Keer (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A new approximation scheme is presented for the mathematical model of convection-diffusion and adsorption. The method is based on the relaxation method and the method of characteristics. We prove the convergence of the method and present some numerical experiments in 1D. The results can be applied to the model of contaminant transport in porous media with multi-site, equilibrium and non-equilibrium type of adsorption.

Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies

Max Duarte, Marc Massot, Stéphane Descombes (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we investigate the coupling between operator splitting techniques and a time parallelization scheme, the parareal algorithm, as a numerical strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients...

A curious property of oscillatory FEM solutions of one-dimensional convection-diffusion problems

Madden, Niall, Stynes, Martin

Similarity:

Song, Yin and Zhang (Int. J. Numer. Anal. Model. 4: 127-140, 2007) discovered a remarkable property of oscillatory finite element solutions of one-dimensional convection-diffusion problems that leads to a novel numerical method for the solution of such problems. In the present paper this property is described using several figures, then a simple proof of the phenomenon is given which is much more intuitive than the technical analysis of Song et al.

Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media

H. Aatif, K. Allali, K. El Karouni (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

The aim of this paper is to study the effect of vibrations on convective instability of reaction fronts in porous media. The model contains reaction-diffusion equations coupled with the Darcy equation. Linear stability analysis is carried out and the convective instability boundary is found. The results are compared with direct numerical simulations.

Conservation schemes for convection-diffusion equations with Robin boundary conditions

Stéphane Flotron, Jacques Rappaz (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this article, we present a numerical scheme based on a finite element method in order to solve a time-dependent convection-diffusion equation problem and satisfy some conservation properties. In particular, our scheme is able to conserve the total energy for a heat equation or the total mass of a solute in a fluid for a concentration equation, even if the approximation of the velocity field is not completely divergence-free. We establish a priori errror estimates for this scheme and...