# Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies

Max Duarte; Marc Massot; Stéphane Descombes

ESAIM: Mathematical Modelling and Numerical Analysis (2011)

- Volume: 45, Issue: 5, page 825-852
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topDuarte, Max, Massot, Marc, and Descombes, Stéphane. "Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies." ESAIM: Mathematical Modelling and Numerical Analysis 45.5 (2011): 825-852. <http://eudml.org/doc/197611>.

@article{Duarte2011,

abstract = {
In this paper, we
investigate the coupling between operator splitting techniques and a time
parallelization scheme, the parareal algorithm,
as a numerical
strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves.
This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum
of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in
the reactive fronts,
spatially very localized.
In a series of previous studies, the numerical analysis of
the
operator splitting as well as
the parareal algorithm
has been conducted
and such approaches have shown a great potential in the framework
of reaction-diffusion and convection-diffusion-reaction systems.
However,
complementary studies are needed for a more complete characterization
of such techniques for these stiff configurations.
Therefore,
we conduct in this work a precise numerical analysis
that considers the
combination of time operator splitting and the parareal algorithm
in the context of
stiff reaction fronts.
The impact of the stiffness featured by these fronts
on the convergence of the method is thus quantified,
and allows to conclude on an optimal strategy for the resolution of
such problems.
We finally perform some numerical simulations
in the field of nonlinear chemical dynamics that
validate the theoretical estimates
and examine the performance of such strategies
in the context of academical one-dimensional test cases
as well as multi-dimensional configurations
simulated on parallel architecture.
},

author = {Duarte, Max, Massot, Marc, Descombes, Stéphane},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Parareal algorithm; operator splitting; convergence analysis;
reaction-diffusion; multi-scale waves; parareal algorithm; reaction-diffusion equation; parallel computation; numerical examples; semidiscretization; algorithm; stiff reaction fronts; convergence; nonlinear chemical dynamics},

language = {eng},

month = {2},

number = {5},

pages = {825-852},

publisher = {EDP Sciences},

title = {Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies},

url = {http://eudml.org/doc/197611},

volume = {45},

year = {2011},

}

TY - JOUR

AU - Duarte, Max

AU - Massot, Marc

AU - Descombes, Stéphane

TI - Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2011/2//

PB - EDP Sciences

VL - 45

IS - 5

SP - 825

EP - 852

AB -
In this paper, we
investigate the coupling between operator splitting techniques and a time
parallelization scheme, the parareal algorithm,
as a numerical
strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves.
This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum
of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in
the reactive fronts,
spatially very localized.
In a series of previous studies, the numerical analysis of
the
operator splitting as well as
the parareal algorithm
has been conducted
and such approaches have shown a great potential in the framework
of reaction-diffusion and convection-diffusion-reaction systems.
However,
complementary studies are needed for a more complete characterization
of such techniques for these stiff configurations.
Therefore,
we conduct in this work a precise numerical analysis
that considers the
combination of time operator splitting and the parareal algorithm
in the context of
stiff reaction fronts.
The impact of the stiffness featured by these fronts
on the convergence of the method is thus quantified,
and allows to conclude on an optimal strategy for the resolution of
such problems.
We finally perform some numerical simulations
in the field of nonlinear chemical dynamics that
validate the theoretical estimates
and examine the performance of such strategies
in the context of academical one-dimensional test cases
as well as multi-dimensional configurations
simulated on parallel architecture.

LA - eng

KW - Parareal algorithm; operator splitting; convergence analysis;
reaction-diffusion; multi-scale waves; parareal algorithm; reaction-diffusion equation; parallel computation; numerical examples; semidiscretization; algorithm; stiff reaction fronts; convergence; nonlinear chemical dynamics

UR - http://eudml.org/doc/197611

ER -

## References

top- A. Abdulle, Fourth order Chebyshev methods with recurrence relation. J. Sci. Comput.23 (2002) 2041–2054.
- G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp.67 (1998) 457–477.
- L. Baffico, S. Bernard, Y. Maday, G. Turinici and G. Zérah, Parallel-in-time molecular-dynamics simulations. Phys. Rev. E66 (2002) 1–4.
- G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differential equations, in Proceedings of the 15th International Domain Decomposition Conference, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin (2003) 426–432.
- G. Bal and Y. Maday, A “parareal” time discretization for non-linear PDE's with application to the pricing of an American put, in Recent Developments in Domain Decomposition Methods, Lect. Notes Comput. Sci. Eng. 23, Springer, Berlin (2003) 189–202.
- D. Barkley, A model for fast computer simulation of waves in excitable media. Physica D49 (1991) 61–70.
- P. Chartier and B. Philippe, A parallel shooting technique for solving dissipative ODEs. Computing51 (1993) 209–236.
- Y. D'Angelo, Analyse et Simulation Numérique de Phénomènes liés à la Combustion Supersonique. Ph.D. thesis, École Nationale des Ponts et Chaussées, France (1994).
- Y. D'Angelo and B. Larrouturou, Comparison and analysis of some numerical schemes for stiff complex chemistry problems. RAIRO Modél. Math. Anal. Numér.29 (1995) 259–301.
- M.S. Day and J.B. Bell, Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theory Modelling4 (2000) 535–556.
- S. Descombes, Convergence of a splitting method of high order for reaction-diffusion systems. Math. Comp.70 (2001) 1481–1501.
- S. Descombes and T. Dumont, Numerical simulation of a stroke: Computational problems and methodology. Prog. Biophys. Mol. Biol.97 (2008) 40–53.
- S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction. Numer. Math.97 (2004) 667–698.
- S. Descombes and M. Schatzman, Strang's formula for holomorphic semi-groups. J. Math. Pures Appl.81 (2002) 93–114.
- S. Descombes, T. Dumont and M. Massot, Operator splitting for stiff nonlinear reaction-diffusion systems: Order reduction and application to spiral waves, in Patterns and waves (Saint Petersburg, 2002), AkademPrint, St. Petersburg (2003) 386–482.
- S. Descombes, T. Dumont, V. Louvet and M. Massot, On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients. Int. J. Computer Mathematics84 (2007) 749–765.
- S. Descombes, T. Dumont, V. Louvet, M. Massot, F. Laurent and J. Beaulaurier, Operator splitting techniques for multi-scale reacting waves and application to low mach number flames with complex chemistry: Theoretical and numerical aspects. In preparation (2011).
- P. Deuflhard, A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math.22 (1974) 289–315.
- P. Deuflhard, Newton Methods for Nonlinear Problems – Affine invariance and adaptive algorithms. Springer-Verlag (2004).
- M. Dowle, R.M. Mantel and D. Barkley, Fast simulations of waves in three-dimensional excitable media. Int. J. Bif. Chaos7 (1997) 2529–2545.
- M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet and F. Laurent, New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators. J. Sci. Comput. (to appear) available on HAL (). URIhttp://hal.archives-ouvertes.fr/hal-00457731
- T. Dumont, M. Duarte, S. Descombes, M.A. Dronne, M. Massot and V. Louvet, Simulation of human ischemic stroke in realistic 3D geometry: A numerical strategy. Bull. Math. Biol. (to appear) available on HAL (). URIhttp://hal.archives-ouvertes.fr/hal-00546223
- T. Echekki, Multiscale methods in turbulent combustion: Strategies and computational challenges. Computational Science & Discovery2 (2009) 013001.
- I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics – Oscillations, Waves, Patterns and Chaos. Oxford University Press (1998).
- C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng.58 (2003) 1397–1434.
- F. Fischer, F. Hecht and Y. Maday, A parareal in time semi-implicit approximation of the Navier-Stokes equations, in Proceedings of the 15th International Domain Decomposition Conference, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin (2003) 433–440.
- M. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in Domain Decomposition Methods in Science and Engineering XVII, Springer, Berlin (2008) 45–56.
- M. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method. J. Sci. Comput.29 (2007) 556–578.
- I. Garrido, M.S. Espedal and G.E. Fladmark, A convergence algorithm for time parallelization applied to reservoir simulation, in Proceedings of the 15th International Domain Decomposition Conference, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin (2003) 469–476.
- I. Garrido, B. Lee, G.E. Fladmark and M.S. Espedal, Convergent iterative schemes for time parallelization. Math. Comput.75 (2006) 1403–1428.
- V. Giovangigli, Multicomponent flow modeling. Birkhäuser Boston Inc., Boston, MA (1999).
- S.A. Gokoglu, Significance of vapor phase chemical reactions on cvd rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories. J. Electrochem. Soc.135 (1988) 1562–1570.
- P. Gray and S.K. Scott, Chemical oscillations and instabilites. Oxford University Press (1994).
- E. Grenier, M.A. Dronne, S. Descombes, H. Gilquin, A. Jaillard, M. Hommel and J.P. Boissel, A numerical study of the blocking of migraine by Rolando sulcus. Prog. Biophys. Mol. Biol.97 (2008) 54–59.
- E. Hairer and G. Wanner, Solving ordinary differential equations II – Stiff and differential-algebraic problems. Second edition, Springer-Verlag, Berlin (1996).
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration – Structure-Preserving Algorithms for Odinary Differential Equations. Second edition, Springer-Verlag, Berlin (2006).
- W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003).
- W. Jahnke, W.E. Skaggs and A.T. Winfree, Chemical vortex dynamics in the Belousov-Zhabotinsky reaction and in the two-variable Oregonator model. J. Phys. Chem.93 (1989) 740–749.
- J. Kim and S.Y. Cho, Computation accuracy and efficiency of the time-splitting method in solving atmosperic transport-chemistry equations. Atmos. Environ.31 (1997) 2215–2224.
- O.M. Knio, H.N. Najm and P.S. Wyckoff, A semi-implicit numerical scheme for reacting flow. II. Stiff, operator-split formulation. J. Comput. Phys.154 (1999) 467–482.
- A.N. Kolmogoroff, I.G. Petrovsky and N.S. Piscounoff, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bulletin de l'Université d'état Moscou, Série Internationale Section A Mathématiques et Mécanique1 (1937) 1–25.
- J.L. Lions, Y. Maday and G. Turinici, Résolution d'EDP par un schéma en temps “pararéel”. C. R. Acad. Sci. Paris Sér. I Math.332 (2001) 661–668.
- C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp.77 (2008) 2141–2153.
- Y. Maday and G. Turinici, A parareal in time procedure for the control of partial differential equations. C. R., Math.335 (2002) 387–391.
- Y. Maday and G. Turinici, The parareal in time iterative solver: A further direction to parallel implementation, in Proceedings of the 15th International Domain Decomposition Conference, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin (2003) 441–448.
- G.I. Marchuk, Splitting and alternating direction methods, in Handbook of numerical analysis I, North-Holland, Amsterdam (1990) 197–462.
- M. Massot, Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure. Discrete Contin. Dyn. Syst. Ser. B2 (2002) 433–456.
- G.J. McRae, W.R. Goodin and J.H. Seinfeld, Numerical solution of the atmospheric diffusion equation for chemically reacting flows. J. Comput. Phys.45 (1982) 1–42.
- H.N. Najm and O.M. Knio, Modeling Low Mach number reacting flow with detailed chemistry and transport. J. Sci. Comput.25 (2005) 263–287.
- H.N. Najm, P.S. Wyckoff and O.M. Knio, A semi-implicit numerical scheme for reacting flow. I. Stiff chemistry. J. Comput. Phys.143 (1998) 381–402.
- M. Schatzman, Toward non commutative numerical analysis: High order integration in time. J. Sci. Comput.17 (2002) 107–125.
- L.F. Shampine, B.P. Sommeijer and J.G. Verwer, IRKC: An IMEX solver for stiff diffusion-reaction PDEs. J. Comput. Appl. Math.196 (2006) 485–497.
- M.D. Smooke, Error estimate for the modified Newton method with applications to the solution of nonlinear, two-point boundary value problems. J. Optim. Theory Appl.39 (1983) 489–511.
- B.P. Sommeijer, L.F. Shampine and J.G. Verwer, RKC: An explicit solver for parabolic PDEs. J. Comput. Appl. Math.88 (1998) 315–326.
- B. Sportisse, Contribution à la modélisation des écoulements réactifs : Réduction des modèles de cinétique chimique et simulation de la pollution atmosphérique. Ph.D. thesis, École Polytechnique, France (1999).
- B. Sportisse, An analysis of operator splitting techniques in the stiff case. J. Comput. Phys.161 (2000) 140–168.
- B. Sportisse and R. Djouad, Reduction of chemical kinetics in air pollution modeling. J. Comput. Phys.164 (2000) 354–376.
- G.A. Staff and E.M. Rønquist, Stability of the parareal algorithm, in Proceedings of the 15th International Domain Decomposition Conference, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin (2003) 449–456.
- G. Strang, Accurate partial difference methods. I. Linear Cauchy problems. Arch. Ration. Mech. Anal.12 (1963) 392–402.
- G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal.5 (1968) 506–517.
- P. Sun, A pseudo non-time splitting method in air quality modeling. J. Comp. Phys.127 (1996) 152–157.
- R. Témam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I. Arch. Rational Mech. Anal.32 (1969) 135–153.
- R. Témam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Rational Mech. Anal.33 (1969) 377–385.
- J.G. Verwer and B.P. Sommeijer, An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-reaction equations. SIAM J. Sci. Comput.25 (2004) 1824–1835.
- J.G. Verwer and B. Sportisse, Note on operator splitting in a stiff linear case. Rep. MAS-R9830 (1998).
- J.G. Verwer, B.P. Sommeijer and W. Hundsdorfer, RKC time-stepping for advection-diffusion-reaction problems. J. Comput. Phys.201 (2004) 61–79.
- A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling wave solutions of parabolic systems. American Mathematical Society, Providence, RI (1994).
- N.N. Yanenko, The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer-Verlag, New York (1971).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.