Displaying similar documents to “Bifurcations of invariant measures in discrete-time parameter dependent cocycles”

On invariant measures for the tend map.

Francesc Bofill (1988)

Stochastica

Similarity:

The bifurcation structure of a one parameter dependent piecewise linear population model is described. An explicit formula is given for the density of the unique invariant absolutely continuous probability measure mu for each parameter value b. The continuity of the map b --> mu is established.

Invariant measures and ideals on discrete groups

Andrzej Pelc

Similarity:

CONTENTS0. Introduction...........................................51. Preliminaries.........................................72. Universal invariant measures..............133. Extensions of invariant measures........214. Saturation of ideals on groups............34References.............................................46

Projections of measures with small supports

Bilel Selmi (2021)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

In this paper, we use a characterization of the mutual multifractal Hausdorff dimension in terms of auxiliary measures to investigate the projections of measures with small supports.

On uniqueness of G-measures and g-measures

Ai Fan (1996)

Studia Mathematica

Similarity:

We give a simple proof of the sufficiency of a log-lipschitzian condition for the uniqueness of G-measures and g-measures which were studied by G. Brown, A. H. Dooley and M. Keane. In the opposite direction, we show that the lipschitzian condition together with positivity is not sufficient. In the special case where the defining function depends only upon two coordinates, we find a necessary and sufficient condition. The special case of Riesz products is discussed and the Hausdorff dimension...

Upper Estimate of Concentration and Thin Dimensions of Measures

H. Gacki, A. Lasota, J. Myjak (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We show upper estimates of the concentration and thin dimensions of measures invariant with respect to families of transformations. These estimates are proved under the assumption that the transformations have a squeezing property which is more general than the Lipschitz condition. These results are in the spirit of a paper by A. Lasota and J. Traple [Chaos Solitons Fractals 28 (2006)] and generalize the classical Moran formula.

Research Article. Multiscale Analysis of 1-rectifiable Measures II: Characterizations

Matthew Badger, Raanan Schul (2017)

Analysis and Geometry in Metric Spaces

Similarity:

A measure is 1-rectifiable if there is a countable union of finite length curves whose complement has zero measure. We characterize 1-rectifiable Radon measures μ in n-dimensional Euclidean space for all n ≥ 2 in terms of positivity of the lower density and finiteness of a geometric square function, which loosely speaking, records in an L2 gauge the extent to which μ admits approximate tangent lines, or has rapidly growing density ratios, along its support. In contrast with the classical...

Invariant measures for piecewise convex transformations of an interval

Christopher Bose, Véronique Maume-Deschamps, Bernard Schmitt, S. Sujin Shin (2002)

Studia Mathematica

Similarity:

We investigate the existence and ergodic properties of absolutely continuous invariant measures for a class of piecewise monotone and convex self-maps of the unit interval. Our assumption entails a type of average convexity which strictly generalizes the case of individual branches being convex, as investigated by Lasota and Yorke (1982). Along with existence, we identify tractable conditions for the invariant measure to be unique and such that the system has exponential decay of correlations...