On uniqueness of G-measures and g-measures
Studia Mathematica (1996)
- Volume: 119, Issue: 3, page 255-269
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topFan, Ai. "On uniqueness of G-measures and g-measures." Studia Mathematica 119.3 (1996): 255-269. <http://eudml.org/doc/216299>.
@article{Fan1996,
abstract = {We give a simple proof of the sufficiency of a log-lipschitzian condition for the uniqueness of G-measures and g-measures which were studied by G. Brown, A. H. Dooley and M. Keane. In the opposite direction, we show that the lipschitzian condition together with positivity is not sufficient. In the special case where the defining function depends only upon two coordinates, we find a necessary and sufficient condition. The special case of Riesz products is discussed and the Hausdorff dimension of Riesz products is calculated.},
author = {Fan, Ai},
journal = {Studia Mathematica},
keywords = {G-measures; g-measures; ergodic measures; Riesz products; quasi-invariance; dimension of measures; -measures; log-Lipschitzian condition; uniqueness; measures},
language = {eng},
number = {3},
pages = {255-269},
title = {On uniqueness of G-measures and g-measures},
url = {http://eudml.org/doc/216299},
volume = {119},
year = {1996},
}
TY - JOUR
AU - Fan, Ai
TI - On uniqueness of G-measures and g-measures
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 3
SP - 255
EP - 269
AB - We give a simple proof of the sufficiency of a log-lipschitzian condition for the uniqueness of G-measures and g-measures which were studied by G. Brown, A. H. Dooley and M. Keane. In the opposite direction, we show that the lipschitzian condition together with positivity is not sufficient. In the special case where the defining function depends only upon two coordinates, we find a necessary and sufficient condition. The special case of Riesz products is discussed and the Hausdorff dimension of Riesz products is calculated.
LA - eng
KW - G-measures; g-measures; ergodic measures; Riesz products; quasi-invariance; dimension of measures; -measures; log-Lipschitzian condition; uniqueness; measures
UR - http://eudml.org/doc/216299
ER -
References
top- [1] L. Breiman, Probability, Addison-Wesley, 1968.
- [2] G. Brown and A. H. Dooley, Odometer actions on G-measures, Ergodic Theory Dynam. Systems 11 (1991), 279-307. Zbl0739.58032
- [3] Y. S. Chow and H. Teicher, Probability Theory, 2nd ed., Springer Texts Statist., Springer, 1988.
- [4] A. H. Fan, Sur les dimensions de mesures, Studia Math. 111 (1994), 1-17.
- [5] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, 1979. Zbl0439.43001
- [6] B. Host, J. F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 135-136 (1986). Zbl0589.43001
- [7] B. Jamison, Asymptotic behavior of successive iterates of continuous functions under a Markov operator, J. Math. Anal. Appl. 9 (1964), 203-214. Zbl0133.10701
- [8] M. Keane, Strongly mixing g-measures, Invent. Math. 16 (1974), 309-324.
- [9] F. Ledrappier, Principe variationnel et systèmes dynamiques symboliques, Z. Wahrsch. Verw. Gebiete 30 (1974), 185-202. Zbl0276.93004
- [10] K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
- [11] B. Petit, g-mesures et schémas de Bernoulli, Thèse de troisième cycle, Université de Rennes, 1974.
- [12] J. Peyrière, Etude de quelques propriétés des produits de Riesz, Ann. Inst. Fourier (Grenoble) 25 (2) (1975), 127-169. Zbl0302.43003
- [13] J. Peyrière, Mesures singulières associées à des découpages aléatoires d'un hypercube, Colloq. Math. 51 (1987), 267-276. Zbl0639.60018
- [14] W. Rudin, Functional Analysis, McGraw-Hill, 1991.
- [15] E. Seneta, Non-negative Matrices and Markov Chains, Springer Ser. Statist., Springer, 1981. Zbl0471.60001
- [16] P. Walters, Ruelle's operator theorem and g-measures, Trans. Amer. Math. Soc. 214 (1975), 375-387. Zbl0331.28013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.